• Title/Summary/Keyword: Model Validation

Search Result 3,241, Processing Time 0.038 seconds

Forecasting of Daily Minimum Temperature during Pear Blooming Season in Naju Area using a Topoclimate-based Spatial Interpolation Model (공간기후모형을 이용한 나주지역 배 개화기 일 최저기온 예보)

  • Han, J.H.;Lee, B.L.;Cho, K.S.;Choi, J.J.;Choi, J.H.;Jang, H.I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.209-215
    • /
    • 2007
  • To improve the accuracy of frost warning system for pear orchard in a complex terrain in Naju area, the daily minimum temperature forecasted by Korea Meteorological Administration (KMA) was interpolated using a regional climate model based on topoclimatic estimation and optimum scale interpolation from 2004 to 2005. Based on the validation experiments done for three pear orchards in the spring of 2004, the results showed a good agreement between the observed and predicted values, resulting in improved predictability compared to the forecast from Korea Meteorological Administration. The differences between the observed and the predicted temperatures were $-2.1{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the valley, $-1.6{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the riverside and $-1.1{\sim}3.5^{\circ}C$ (on average $0.6^{\circ}C$) in the hills. Notably, the errors have been reduced significantly for the valley and riverside areas that are more affected by the cold air drainage and more susceptible to frost damage than hills.

Development of a Predictive Model for Groundwater Use (지하수 이용량 추정기법 개발)

  • 우남칠;조민조;김남종
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.297-309
    • /
    • 1994
  • For a total of 210 city and Kun areas in Korea, a model was developed to predict the amount of groundwater use at each area. At first, the total areas were classified into 3 groups by the characteristics of groundwater use: residential(87), industrial(27) and agricultural (96) areas. Among them, type areas, represented by the dominant groundwater usage for typical purposes, were selected: residential(22), industrial(8) and agricultural(32) areas. Data for the various factors possibly related to the groundwater use were statistically analyzed. The factors include, 1) agricultural area, 2) industrial area, 3) adininistrative unit area(city or Kun), 4) population, 5) groundwater capadty for community water supply, 6) average water supply for a person per day, 7) agricultural water-use, 8) industrial water-use, 9) residential wateruse, 10) rates of community water supply. The data were correlated to the total amount of groundwater use, and the correlations tested at the 95% and 99% significance levels. Influential, significantly related, factors were identified from the tests. Using the multiple regression method with the influential factors, predictive equations were drawn to calculate the amount of groundwater use for residential-industrial and agricultural areas, respectively. The equations were calibrated to minimize the RMS(root mean square) of the differences between predicted and observed groundwater use. After the validation with future data, the model can be utilized in the regional development plans to predict the maximum groundwater demand at each area.

  • PDF

Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements

  • Yi, Jin-Hak;Cho, Soojin;Koo, Ki-Young;Yun, Chung-Bang;Kim, Jeong-Tae;Lee, Chang-Geun;Lee, Won-Tae
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.281-298
    • /
    • 2007
  • The load carrying capacity of a bridge needs to be properly assessed to operate the bridge safely and maintain it efficiently. For the evaluation of load carrying capacity considering the current state of a bridge, static and quasi-static loading tests with weight-controlled heavy trucks have been conventionally utilized. In these tests, the deflection (or strain) of the structural members loaded by the controlled vehicles are measured and analyzed. Using the measured data, deflection (or strain) correction factor and impact correction factor are calculated. These correction factors are used in the enhancement of the load carrying capacity of a bridge, reflecting the real state of a bridge. However, full or partial control of the traffic during the tests and difficulties during the installment of displacement transducers or strain gauges may cause not only inconvenience to the traffic but also the increase of the logistics cost and time. To overcome these difficulties, an alternative method is proposed using an excited response part of full measured ambient acceleration data by ordinary traffic on a bridge without traffic control. Based on the modal properties extracted from the ambient vibration data, the initial finite element (FE) model of a bridge can be updated to represent the current real state of a bridge. Using the updated FE model, the deflection of a bridge akin to the real value can be easily obtained without measuring the real deflection. Impact factors are obtained from pseudo-deflection, which is obtained by double-integration of the acceleration data with removal of the linear components on the acceleration data. For validation, a series of tests were carried out on a steel plategirder bridge of an expressway in Korea in four different seasons, and the evaluated load carrying capacities of the bridge by the proposed method are compared with the result obtained by the conventional load test method.

A study on performance-based evaluation system for NATM tunnels in use: development of evaluation model and validation (공용중인 NATM 터널의 성능중심 평가체계 연구: 평가모형 개발 및 검증)

  • Moon, Joon-Shik;Kim, Hong-Kyoon;An, Jai-Wook;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.107-120
    • /
    • 2020
  • In a performance-based evaluation of structures in use, the current performance is assessed by summing up the weighting of the evaluation indices for each performance. In this study, to suggest a performance-based evaluation technique for NATM tunnels in use, the performance evaluation indices were derived by examining the characteristics and similarities of each index developed from previous study. The weighting of the evaluation indices was derived by calculating the relative importance of each evaluation indices from the AHP analysis. In order to develop a quantitative evaluation model, grading criteria for each performance index was derived through literature review, and performance evaluation tables for road and railway tunnels were presented. In order to verify the significance of the proposed performance evaluation model, the correlation analysis was performed between each evaluation index and the final evaluation result. In the correlation analysis, the survey data measured through precision safety diagnosis in the tunnel in use was applied. It may be said that the proposed evaluation indices, weighting, criteria and evaluation models for tunnels in use can be applied to the performance-based maintenance system of tunnels.

Study within the Framework of Collaboration on the Limitation and Alternatives of Governmental Project for Science Culture (협업의 관점에서 바라본 정부주도 과학문화 사업의 한계와 대안)

  • Shon, Hyang Koo;Park, Jin Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.716-730
    • /
    • 2016
  • The meaning and role of science culture based on such values as rational thinking, creativity, critical validation has been growing in the process of discussing various social problems. In order to diffuse science culture, it is important to sustain citizen's activeness by providing contents which can induce interest on the base of two-way communication between public and experts and to support citizen activities performed voluntarily. To that end, various people such as scientist, government policymaker, communicator, those in charge of culture and art, exhibition curator should make up collaboration system and such requirement as motivation, leadership, agreement between the participants, communication, trust relationship is also to be met properly in order to proceed collaboration efficiently. This study reviews how these factors are coming true in governmental project for science culture and develops proposal for improvement on the base of opinions collected through expert meetings, interviews, workshop and data research. In addition, it explains that government must strengthen scientific cultural project personnel and lay infra such as communications hub, regional center, platform and improve the business selection method to promote competition and collaboration among project participants with reformation of reward and regulatory systems. It is performed to suggest comprehensive ways to increase efficiency of project for science culture out of not the deficit model which regard public as passive acceptant but context model or PES(public engagement in science) that take public who focus his attention and participate actively into account.

A Study on Time Series Analysis of Membrane Fouling by using Genetic Algorithm in the Field Plant (유전자알고리즘을 이용한 막오염 시계열 예측 연구)

  • Lee, Jin Sook;Kim, Jun Hyun;Jun, Yong Seong;Kwak, Young Ju;Lee, Jin Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.444-451
    • /
    • 2016
  • Most research on membrane fouling models in the past are based on theoretical equations in lab-scale experiments. But these studies are barely suitable for applying on the full-scale spot where there is a sequential process such as filtration, backwash and drain. This study was conducted in submerged membrane system which being on operation auto sequentially and treating wastewater from G-water purification plant in Incheon. TMP had been designated as a fouling indicator in constant flux conditions. Total volume of inflow and SS concentration are independent variables as major operation parameters and time-series analysis and prediction of TMP were conducted. And similarity between simulated values and measured values was assessed. Final prediction model by using genetic algorithm was fully adaptable because simulated values expressed pulse-shape periodicity and increasing trend according to time at the same time. As results of twice validation, correlation coefficients between simulated and measured data were $r^2=0.721$, $r^2=0.928$, respectively. Although this study was conducted limited to data for summer season, the more amount of data, better reliability for prediction model can be obtained. If simulator for short range forecast can be developed and applied, TMP prediction technique will be a great help to energy efficient operation.

Drop Impact Analysis of Outside Cooling Unit Package of System Air-Conditioner and Experimental Verification (시스템 에어컨 실외기 포장품의 낙하충격해석 및 시험적 검증)

  • Kim, Hyung-Seok;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.111-116
    • /
    • 2018
  • This research examines the drop impact of an external cooling unit package of an air conditioner system. The packaging is composed of a shock-absorbing material, which protects the package contents by absorbing the impact energy and other parts for fixture. Accurate quantification of the impact acceleration experienced by the package contents is necessary to design an effective packaging with minimal volume and sufficient shock absorbing capacity. Explicit time integration was used for the drop impact analyses. A finite element model of the package was constructed, material testing and material model selection were carried out, and sensors for data acquisition were modeled to obtain accurate simulation results. The results were compared with real physical test data. Due to imprecise modeling of the damping, the acceleration and strain values predicted by the simulation were larger than those from physical test. However, the trend of the history data and the peak deceleration value in the direction of impact showed good agreements. Thus, the analysis model and scheme are suitable for the design of an air conditioner cooling unit package.

Development of Moisture Content Prediction Model for Larix kaempferi Sawdust Using Near Infrared Spectroscopy (근적외선 분광분석법을 이용한 낙엽송 목분의 함수율 예측 모델 개발)

  • Chang, Yoon-Seong;Yang, Sang-Yun;Chung, Hyunwoo;Kang, Kyu-Young;Choi, Joon-Weon;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • The moisture content of sawdust must be measured accurately and controlled appropriately during storage and transportation because biological degradation could be caused by improper moisture. In this study, to measure the moisture contents of Larix kaempferi sawdust, the near-infrared reflectance spectra (Wavelength 1000-2400 nm) of sawdust were used as detection parameter. After acquiring the NIR reflection spectrum of specimens which were humidified at each relative humidity condition ($25^{\circ}C$, RH 30~99%), moisture content prediction model was developed using mathematical preprocessings (e.g. smoothing, standard normal variate) and partial least squares (PLS) analysis with the acquired spectrum data. High reliability of the MC regression model with NIR spectroscopy was verified by cross validation test ($R^2$ = 0.94, RMSEP = 1.544). The results of this study show that NIR spectroscopy could be used as a convenient and accurate method for the nondestructive determination of moisture content of sawdust, which could lead to optimize wood utilization.

Possibility analysisof future droughts using long short term memory and standardized groundwater level index (LSTM과 SGI를 이용한 미래 가뭄 발생 가능성 분석)

  • Lim, Jae Deok;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • The purpose of this study is to analyze the possibility of future droughts by calculating the Standardized Groundwater level Index(SGI) after predicting groundwater level using Long Short Term Memory (LSTM) model. The groundwater level of the Kumho River basin was predicted for the next three years by using the LSTM model, and it was validated through RMSE after learning with observation data except the last three years. The temporal SGI was calculated by using the prediction data and the observation data. The calculated SGI was interpolated within the study area, and the spatial SGI was calculated as the average value for each catchment using the interpolated SGI. The possibility of spatio-temporal drought was analyzed using calculated spatio-temporal SGI. It is confirmed that there is a spatio-temporal difference in the possibility of drought. Through the improvement of deep learning model and diversification of validation method, it is expected to obtain more reliable prediction results and the expansion of study area can be used to respond to drought nationwide, and furthermore it can provide important information for future water resource management.

Analysis of Human Body Suitability for Mattresses by Using the Level of PsychoPhysiological Relaxation and Development of Regression Model

  • Min, Seung Nam;Kim, Jung Yong;Kim, Dong Joon;Park, Yong Duck;Kim, Seoung Eun;Lee, Ho Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.199-215
    • /
    • 2015
  • Objective: The purpose of this study is to find the level of physical relaxation of individual subject by monitoring psychophysiological biofeedback to different types of mattresses. And, the study also aims to find a protocol to make a selection of the best mattress based on the measured information. Background: In Korea, there are an increasing number of people using western style bed. However, they are often fastidious in choosing the right mattress for them. In fact, people use their past experience with their old mattress as well as the spontaneous experience they encounter in a show room to finally decide to buy a bed. Method: Total five mattresses were tested in this study. After measuring the elasticity of the mattresses, they were sorted into five different classes. Physiological and psychological variables including Electromyography (EMG), heart rates (HR), oxygen saturations (SaO2) were used. In addition, the peak body pressure concentration rate was used to find uncomfortably pressured body part. Finally, the personal factors and subjective satisfaction were also examined. A protocol was made to select the best mattress for individual subject. The selection rule for the protocol considered all the variables tested in this study. Results: The result revealing psychological comfort range of 0.68 to 0.95, dermal comfort range of 3.15 to 6.07, back muscle relaxation range of 0.25 to 1.64 and personal habit range of 2.0 to 3.4 was drawn in this study. Also a regression model was developed to predict biofeedback with the minimal use of biofeedback devices. Moreover results from the proposed protocol with the regression equation and subjective satisfaction were compared with each other for validation. Ten out of twenty subjects recorded the same level of relaxation, and eight subjects showed one-level difference while two subjects showed two-levels difference. Conclusion: The psychophysiological variables and suitability selection process used in this study seem to be used for selecting and assessing ergonomic products mechanically or emotionally. Application: This regression model can be applied to the mattress industry to estimate back muscle relaxation using dermal, psychophysiology and personal habit values.