• Title/Summary/Keyword: Model Material Test

Search Result 1,453, Processing Time 0.03 seconds

Analysis on the Behaviour of Foundation Using the Non-Linear Constitutive Laws (비선형구성식을 이용한 기초지반의 거동해석)

  • Jeong, Jin Seob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.253-265
    • /
    • 1993
  • This paper presents a numerical method for implementing a nonlinear constitutive material model developed by Lade, into a finite element computer program. The techniques used are based on the displacement method for the solution of axial symmetric and plane strain nonlinear boundary value problems. Laboratory behaviour of Baekma river sand(#40-60) is used to illustrate the determination of the parameters and verification of the model. Computer procedure is developed to determine the material parameters for the nonlinear model from the raw laboratory test data. The model is verified by comparing its predictions with observed data used for the determination of the parameters and then with observed data not used for the determination. Three categories of tests are carried out in the back-prediction exercise; (1) A hydrostatic test including loading and unloading response, (2) Conventional triaxial drained compression tests at three different confining pressure and (3) A model strip footing test not including in the evaluation of material parameters. Pertinent observations are discussed based on the comparison of predicted response and experimental data.

  • PDF

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 한정영;최철현;배원병;김영호;이종헌
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.204-208
    • /
    • 2000
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity, geometrical size, and die velocity of model materials are different from those of real materials. Actually, the forming load of yoke, which is an automobile part made of aluminum alloys(Al-6061), is predicted by using this approximate similarity theory. Firstly, upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061), and a suitable model material is selected for model material test of Al-6061. And then hot forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material, which has been selected from above upset forging tests. The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

A Fiber Model Based on Secondary Development of ABAQUS for Elastic-Plastic Analysis

  • Shi, Yan-Li;Li, Hua-Wei;Wang, Wen-Da;Hou, Chao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1560-1576
    • /
    • 2018
  • With the aim to provide an efficient platform for the elastic-plastic analysis of steel structures, reinforced concrete (RC) structures and steel-concrete composite structures, a program iFiberLUT based on the fiber model was developed within the framework of ABAQUS. This program contains an ABAQUS Fiber Generator which can automatically divide the beam and column cross sections into fiber sections, and a material library which includes several concrete and steel uniaxial material models. The range of applications of iFiberLUT is introduced and its feasibility is verified through previously reported test data of individual structural members as well as planar steel frames, RC frames and composite frames subjected to various loadings. The simulation results indicate that the developed program is able to achieve high calculation accuracy and favorable convergence within a wide range of applications.

Optimal Test Condition by Ultrasonic Simulation (초음파 시뮬레이션을 이용한 최적의 탐상조건)

  • Huh, Sun-Chul;Park, Young-Chul;Boo, Myung-Hwan;Kang, Jung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.45-54
    • /
    • 1999
  • Non destructive test is applied to revise mechanical strength and assume material strength or defect of material, equipment and structure, instead of fracture test. Especially, ultrasonic test has the characteristics such as an excellent permeability high-sensitiveness to fine defect and an almost exact measurement for position, size and direction of inner defect which differ from other non destructive tests. In this study, the program is developed to evaluate optimal testing condition, to distinguish obstacle echo and defect position. This program on the basic of Ray-Tracing model shows generation and processing of ultrasonic pulse. The simulation is compared with testing in the 3 cases of an oblique angle transducer like $45^{\circ},\;60^{\circ}\;and\;70^{\circ}$. The test result for all conditions is well compared with simulation result when relative not is within $0.1{\sim}7.2%$. And the course of several echos is simply assumed through simulation.

  • PDF

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

Radiation Characteristics of Heavy-weight Floor Impact Sounds in a Standard Test Building (표준실험동에서 중량충격음의 방사 특성)

  • Yoo, Seung-Yup;Jeong, Yong;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study is to develop a prediction model for evaluating heavy-weight floor impact sounds in a test building. Three rooms in the test building (slab thickness In and 240mm), which consist of frame concrete structures were tested and modeled. First, the SPL distribution in the receiving room was analyzed by measuring SPL at 90 positions using a bang machine. Then, a vibration model using finite element method is proposed considering the material properties and boundary conditions. In addition, the result of transient analysis was compared with field measurements using a standard heavy-weight impact source. Through a vibro-acoustic simulation program, an acoustic model evaluating the building elements (reflected wall, nor, window and door) was proposed. Finally, validation of the prediction model was conducted by vibro-acoustic analysis with field measurements of noise radiation characteristics in receiving rooms.

  • PDF

A Vibration Response Analysis of Steel Building Frame with K Shape Brace Vibrationally Controlled by Turbulent Flow Dampers sealed by Visco-elastic Material (점탄성물질 난류댐퍼를 이용한 K형 철골 브레이스 골조의 진동응답해석)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-68
    • /
    • 2006
  • In this thesis, a full-scale K shape damper test model was constructed in which a passive vibration control system. This passive vibration control system was incorporated with the use of a newly developed turbulent flow damper sealed by viscoelastic material. A series of tests and earthquake observation has been conducted in this test model. The purpose of the present thesis is to investigate the vibration response characteristics of the building and to verify the effectiveness of the vibration control system. By the static loading test, it was recognized that incorporation of the dampers had little influence on static horizontal stiffness of the building. Free vibration tests revealed that the dampers incorporated increased the damping ratio of the building up to 3 times compared with the undamped case. The effectiveness of the developed vibration control system was confirmed based on the excitation tests and earthquake response observation.

  • PDF

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

Determination of Material Parameters for Microstructure Prediction Model of Alloy 718 Based on Recystallization and Grain Growth Theories (재결정 및 결정립 성장이론에 기초한 Alloy 718의 조직예측 모델에 대한 재료상수 결정방법)

  • Yeom, J.T.;Hong, J.K.;Kim, J.H.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.491-497
    • /
    • 2011
  • This work describes a method for determining material parameters included in recrystallization and grain growth models of metallic materials. The focus is on the recrystallization and grain growth models of Ni-Fe based superalloy, Alloy 718. High temperature compression test data at different strain, strain rate and temperature conditions were chosen to determine the material parameters of the model. The critical strain and dynamically recrystallized grain size and fraction at various process conditions were generated from the microstructural analysis and strain-stress relationships of the compression tests. Also, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the average grain size data obtained from other compression tests of the Alloy 718 specimens with the initial grain size of $59.5{\mu}m$.

A Fundamental Study on Reinforced Soil Slope with Improved Soil Facing (개량토 벽면공을 활용한 보강성토사면에 관한 기초적 연구)

  • Bhang, In-Hwang;Seo, Se-Gwan;Kim, Kwang-Leyol;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2013
  • This paper presents the slope wall technique using soil improvement material for reinforced soil slope through laboratory scale model tests, and verifies the experimental results comparing with numerical analysis. In additional, case study in field has performed to investigate the deformation of reinforced soil slope for 6 months. As a result of laboratory scale model test, numerical analysis, and case study, the reinforcement effect of the slope wall technique using soil improvement material is sufficient to be constructed as reinforced soil slope. The technique shows the stable ratio (0.4%) of horizontal to vertical deformation in the surface loading.