• 제목/요약/키워드: Model Material

검색결과 7,837건 처리시간 0.033초

유리 섬유 강화 폴리우레탄 폼의 온도 및 변형률 속도 의존 재료 거동 모델링 (Modeling of the Temperature-Dependent and Strain Rate-Dependent Dynamic Behavior of Glass Fiber-Reinforced Polyurethane Foams)

  • 이동주;신상범;김명현
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.547-555
    • /
    • 2019
  • The purpose of this study was to establish a numerical model of polyurethane foam (PUF) to simulate the dynamic response and strength of membrane-type Liquefied natural gas (LNG) Cargo containment system (CCS) under the impact load. To do this, initially, the visco-plastic behavior of PUF was characterized by testing the response of the PUF to the impact loads with various strain rates as well as PUF densities at room temperature and at cryogenic conditions. A PUF material model was established using the test results of the material and the FE analysis. To verify the validation of the established material model, simulations were performed for experimental applications, e.g., the dry drop test, and the results of FEA were compared to the experimental results. Based on this comparison, it was found that the dynamic response of PUF in dry drop tests, such as the reaction force and fracture behaviors, could be simulated successfully by the material model proposed in this study.

Debye Polarization을 이용한 흡음재 모델링에 대한 연구 (An Approach for Modeling of Sound Absorbing Material using Debye Polarization)

  • 박규칠;;윤종락
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1391-1396
    • /
    • 2012
  • 본 연구에서는 해저의 반사면이나 흡음재와 같이 주파수에 따라 다른 특성을 가지는 매체를 수치적으로 모델링하였다. 기존의 흡음재 해석 등가회로 모델에 용량성 성분을 부가하기 위해 Debye polarization 기법을 적용하여 흡음재의 모델링을 하였다. 이 모델의 파라미터를 추정하기 위해 폴리우레탄이라는 흡음재의 흡음 주파수 특성을 이용하였다. 파라미터의 추정에는 non-linear least squares라는 비선형 최적화 기법을 사용하였다. 먼저 두께 25 mm의 폴리우레탄의 흡음재의 파라미터를 추정하였으며, 이 파라미터를 이용해 50 mm의 폴리우레탄의 특성을 모델링하는 것이 가능하였다. 이를 바탕으로 흡음재의 주파수에 따른 흡음 특성을 하나의 간단한 모델로 모델링하는 것이 가능함을 보였다.

초기 신체 구조 모델을 기반으로 한 신체 블록의 물량 정보 생성 및 블록 탑재 시물레이션 (Generation of the Production Material Information of a Building Block and the Simulation of the Block Erection Based on the Initial Hull Structural Model)

  • 노명일;이규열
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.103-118
    • /
    • 2006
  • At the initial design stage, the generation process of the production material information of a building block and the simulation process of the block erection, which are required to perform the production planning and scheduling, have been manually performed using 2D drawings, based on the data of parent ships, and subjective intuition from past experience. To make these processes automatic, the accurate generation method of the production material information and the convenient simulation method of the block erection based on the initial hull structural model(3D CAD model), were developed in this study. Here, the initial hull' structural model was generated from the initial hull structural CAD system early developed by us. To evaluate the developed methods. these methods were applied to corresponding processes of a deadweight 300,OOOton VLCC. As a result. it was shown that the production material information of a building block can be accurately generated and the block erection can be conveniently simulated in the initial design stage.

2차원 CFD를 활용한 시멘트 페이스트의 슬럼프 유동 모사 (Numerical Analysis on Flow of Cement Paste using 2D-CFD)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제19권4호
    • /
    • pp.19-25
    • /
    • 2017
  • PURPOSES : In this paper, the flow of construction material was simulated using computational fluid dynamics in a 2D axisymmetric condition to evaluate the effect of initial or varying material properties on the final shape of a specimen. METHODS : The CFD model was verified by using a well-known analytical solution for a given test condition followed by performing a sensitivity analysis to evaluate the effect of material properties on the final shape of material. Varying dynamic viscosity and yield stress were also considered. RESULTS : The CFD model in a 2D axisymmetric condition agreed with the analytical solution for most yield stress conditions. Minor disagreements observed at high yield stress conditions indicate improper application of the pure shear assumption for the given material behavior. It was also observed that the variation of yield stress and dynamic viscosity during curing had a meaningful effect on the final shape of the specimen. CONCLUSIONS : It is concluded that CFD modeling in a 2D axisymmetric condition is good enough to evaluate fluidal characteristics of material. The model is able to consider varying yield stress and viscosity during curing. The 3D CFD-DEM coupled model may be required to consider the interaction of aggregates in fluid.

재료 물성 최적화를 통한 PS 강연선의 형상 단순화에 관한 해석적 연구 (An Analytical Study on the Simplification of the Shape of PS Tendon Through the Optimization of Material Properties)

  • 김도연;장일영
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.555-561
    • /
    • 2024
  • This paper derives material properties of steel bars that simulate the distribution of stress and strain of prestressed tendons used in Prestressed concrete(PSC) girders and presents an optimal material model. ABAQUS software was used to establish the 3D solid model of the PSC girder and strand wire rope for a PS(Prestressed) tendon. Then the model of steel wire rope was imported into the Isight interface plugin directly through the ABAQUS and the Data Matching. In ABAQUS, the contact pairs were established, the models were meshed, the constraints were applied to solve the finite element model and an axial tension of 0.5m/s was loaded to analyze the stress and deformation distributions in the normal working range of the PS strand wire rope. In Data Matching, classical experimental data is fitted to the optimal material properties through finite element analysis and multi-objective optimization. The results show that the steel bar with optimal material properties presents a similar linear area and stress distribution with the PS tendon.

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

노면의 강도 추정을 통한 자율 주행 로봇의 실시간 최적 주행 파라미터 예측 (Real-Time Prediction of Optimal Control Parameters for Mobile Robots based on Estimated Strength of Ground Surface)

  • 김자영;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.58-69
    • /
    • 2014
  • This paper proposes a method for predicting maximum friction coefficients and optimal slip ratios as optimal control parameters for traction control or slip control of autonomous mobile robots on rough terrain. This paper focuses on strength of ground surface which indicates different characteristics depending on material types on surface. Strength of various material types can be estimated by Willoughby sinkage model and by a developed testbed which can measure forces, velocities, and displacements generated by wheel-terrain interaction. Estimated strength is collaborated on building improved Brixius model with friction-slip data from experiments with the testbed over sand and grass material. Improved Brixius model covers widespread material types in outdoor environments on predicting friction-slip characteristics depending on strength of ground surface. Thus, a prediction model for obtaining optimal control parameters is derived by partial differentiation of the improved Brixius model with respect to slip. This prediction model can be applied to autonomous mobile robots and finally gives secure maneuverability on rough terrain. Proposed method is verified by various experiments under similar conditions with the ones for real outdoor robots.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

An intelligent consultant for material handling euqipment selection and evaluation

  • Park, Yang-Byung;Cha, Kyung-Cheon
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.79-90
    • /
    • 1995
  • The material handling equipment selection, that is a key task in the material handling system design, is a complex, difficult task, and requires a massive technical knowledge and systematic analysis. It is invaluable to justify the selected equipment model by the performance evaluation before its actual implementation. This paper presents an intelligent knowledge-based expert system called "IMESE" created by authors, for the selection and evaluation of material handling equipment model suitable for movement and storage of materials in a manufacturing facility. The IMESE is consisted of four modules: a knowledge base to select an appropriate equipment type, a multiple criteria decision making procedure to choose the most favorable commercial model of the selected equipment type, a database to store the list of commercial models of equipment types with their specifications, and simulators to evaluate the performance of the equipment model. The whole process of IMESE is executed under VP-Expert expert system environment.vironment.

  • PDF

CMP 프로세스의 통계적인 다규모 모델링 연구 (A Statistical Study of CMP Process in Various Scales)

  • 석종원
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2110-2117
    • /
    • 2003
  • A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.