• Title/Summary/Keyword: Model Inference

Search Result 1,158, Processing Time 0.024 seconds

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

Finding the Information Source by Voronoi Inference in Networks (네트워크에서 퍼진 정보의 근원에 대한 Voronoi 추정방법)

  • Choi, Jaeyoung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.684-694
    • /
    • 2019
  • Information spread in networks is universal in many real-world phenomena such as propagation of infectious diseases, diffusion of a new technology, computer virus/spam infection in the internet, and tweeting and retweeting of popular topics. The problem of finding the information source is to pick out the true source if information spread. It is of practical importance because harmful diffusion can be mitigated or even blocked e.g., by vaccinating human or installing security updates. This problem has been much studied, where it has been shown that the detection probability cannot be beyond 31% even for regular trees if the number of infected nodes is sufficiently large. In this paper, we study the impact of an anti-information spreading on the original information source detection. We consider an active defender in the network who spreads the anti-information against to the original information simultaneously and propose an inverse Voronoi partition based inference approach, called Voronoi Inference to find the source. We perform various simulations for the proposed method and obtain the detection probability that outperforms to the existing prior work.

A Study on Dimming Control of Fluorescent Lamp with the Aid of Fuzzy Inference Method (퍼지추론방법에 의한 형광등의 디밍 제어에 대한 연구)

  • Baek, Jin-Yeol;Lee, In-Tae;Oh, Sung-Kwun;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.911-917
    • /
    • 2008
  • In this paper. we introduce and investigate new architectures and comprehensive design methodologies of intelligent dimming converter and evaluate the proposed model and the system through a series of numeric experiments. The intelligent dimming converter is developed by using the regression polynomial fuzzy model. In this paper, we put emphasis on the design of electronic ballast based on intelligent dimming converter and the energy saving according to the day-light and the user setting by applying the intelligent model to a fluorescent lamp. We show the superiority of the proposed intelligent dimming converter through the evaluation of performance with conventional electronic ballast by applying the intelligent model to real systems.

Real Time Textile Animation Using Fuzzy Inference (퍼지추론을 적용한 직물 애니메이션)

  • Hwang, Seon-Min;Song, Bok-Hee;Yun, Han-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.1-8
    • /
    • 2011
  • A fuzzy inference technique for real-time textile animation without integration at textile model based Mass-Spring model is introduced. Until now many techniques have used the Mass-Spring model to describe elastically deformable objects like textile. A textile object is able to represent as a deformable surface composed of spring and masses, the movement of textile surface which is analysed through the numerical integration by the fundamental law of dynamics such as Hooke's law. However, the integration methods have 'instability problems' if the explicit Euler's method is applied or 'large amounts of calculation' if the implicit Euler's method is applied. A simple and fast animation technique for Mass-Spring model of a textile with fuzzy inference is proposed. The stabilized simulation result is obtained the state of each mass-point in real-time for the n of mass-points by a relatively simple calculation.

Statistical Applications for the Prediction of White Hispanic Breast Cancer Survival

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Ross, Elizabeth;Shrestha, Alice
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5571-5575
    • /
    • 2014
  • Background: The ability to predict the survival time of breast cancer patients is important because of the potential high morbidity and mortality associated with the disease. To develop a predictive inference for determining the survival of breast cancer patients, we applied a novel Bayesian method. In this paper, we propose the development of a databased statistical probability model and application of the Bayesian method to predict future survival times for White Hispanic female breast cancer patients, diagnosed in the US during 1973-2009. Materials and Methods: A stratified random sample of White Hispanic female patient survival data was selected from the Surveillance Epidemiology and End Results (SEER) database to derive statistical probability models. Four were considered to identify the best-fit model. We used three standard model-building criteria, which included Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit. Furthermore, the Bayesian method was used to derive future survival inferences for survival times. Results: The highest number of White Hispanic female breast cancer patients in this sample was from New Mexico and the lowest from Hawaii. The mean (SD) age at diagnosis (years) was 58.2 (14.2). The mean (SD) of survival time (months) for White Hispanic females was 72.7 (32.2). We found that the exponentiated Weibull model best fit the survival times compared to other widely known statistical probability models. The predictive inference for future survival times is presented using the Bayesian method. Conclusions: The findings are significant for treatment planning and health-care cost allocation. They should also contribute to further research on breast cancer survival issues.

Nonlinear Inference Using Fuzzy Cluster (퍼지 클러스터를 이용한 비선형 추론)

  • Park, Keon-Jung;Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2016
  • In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.

A Formal Model and a Design of Inference Engine for Context-Aware Mobile Computing (컨텍스트 인지 모바일 컴퓨팅을 위한 정형모델 및 추론 시스템 설계)

  • Kim, Moon Kwon;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-250
    • /
    • 2013
  • Context-aware mobile computing has become the primary approach to realize automatic, autonomous, and user-centric computing in the context of largely increasing the amount of mobile devices used that embed available sensors. However, designing an inference engine nonetheless requires the tasks of analyzing contexts, situations that can be inferred, etc. Moreover, a mobile device has limited resources and limited computation capability, which results in recognizing the common sense of its unsuitable environment for processing inference. Hence, we propose context-situation reasoning elements and their formal models in this paper, and we verify the formal models' applicability by applying them to an example. Finally, we design and implement an inference engine that realize the context-situation inference elements in computing environment, and we experiment an example by using the proposed inference engine to verify applicability and reusability of the inference engine.

Bayesian Inference for Littlewood-Verrall Reliability Model

  • Choi, Ki-Heon;Choi, Hae-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper we discuss Bayesian computation and model selection for Littlewood-Verrall model using Gibbs sampling. A numerical example with a simulated data is given.

  • PDF

Comparison of Some Nonparametric Statistical Inference for Logit Model (로짓모형의 비모수적 추론의 비교)

  • 정형철;김대학
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.355-366
    • /
    • 2002
  • Nonparametric statistical inference for the parameter of logit model were examined. Usually nonparametric approach is milder than parametric approach based on normal theory assumption. We compared the two nonparametric methods for legit model, the bootstrap and random permutation in the sense of coverage probability. Monte Carlo simulation is conducted for small sample cases. Empirical power of hypothesis test and coverage probability for confidence interval estimation were presented for simple and multiple legit model respectively. An example were also introduced.