• Title/Summary/Keyword: Model Helicopter

Search Result 269, Processing Time 0.022 seconds

Active Airframe Vibration Control Simulations of Lift-offset Compound Helicopters in High-Speed Flights (고속 비행의 Lift-offset 복합형 헬리콥터 기체의 능동 진동 제어 시뮬레이션)

  • Hong, Sung-Boo;Kwon, Young-Min;Kim, Ji-Su;Lee, Yu-Been;Park, Byeong-Hyeon;Shin, Hyun-Cheol;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.357-367
    • /
    • 2021
  • This paper studies the simulations of active airframe vibration controls for the Sikorsky X2 helicopter with a lift-offset coaxial rotor. The 4P hub vibratory loads of the X2TD rotor are obtained from the previous work using a rotorcraft comprehensive analysis code, CAMRAD II. The finite element analysis software, MSC.NASTRAN, is used to model the structural dynamics of the X2TD airframe and to analyze the 4P vibration responses of the airframe. A simulation study using Active Vibration Control System(AVCS) with Fx-LMS algorithm to reduce the airframe vibrations is conducted. The present AVCS is modeled using MATLAB Simulink. When AVCS is applied to the X2TD airframe at 250 knots, the 4P longitudinal and vertical vibration responses at the specified airframe positions, such as the pilot seat, co-pilot seat, engine deck, and prop gearbox, are reduced by 30.65 ~ 94.12 %.

A study on the Generation Method of Aircraft Wing Flexure Data Using Generative Adversarial Networks (생성적 적대 신경망을 이용한 항공기 날개 플렉셔 데이터 생성 방안에 관한 연구)

  • Ryu, Kyung-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.179-184
    • /
    • 2022
  • The accurate wing flexure model is required to improve the transfer alignment performance of guided weapon system mounted on a wing of fighter aircraft or armed helicopter. In order to solve this problem, mechanical or stochastical modeling methods have been studying, but modeling accuracy is too low to be applied to weapon systems. The deep learning techniques that have been studying recently are suitable for nonlinear. However, operating fighter aircraft for deep-learning modeling to secure a large amount of data is practically difficult. In this paper, it was used to generate amount of flexure data samples that are similar to the actual flexure data. And it was confirmed that generated data is similar to the actual data by utilizing "measures of similarity" which measures how much alike the two data objects are.

Operability Assessment of a Naval Vessel in Seaways Based on Seakeeping Performance and Operation Scenario (내항 성능과 운용 시나리오에 기반한 함정의 실해역 운항성 평가)

  • Choi, Sungeun;Kim, Kiwon;Kim, Hoyong;Seo, Jeonghwa;Yang, Kyung-Kyu;Rhee, Shin Hyung;Kim, Beomjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.252-261
    • /
    • 2022
  • The present study concerns assessing the operability of a surface combatant, based on the Percent-Time-Operable (PTO). For validation of the seakeeping analysis in the regular waves, the model test is first conducted in a towing tank. The seakeeping analysis results in the regular waves are expanded to the irregular waves, considering the wave spectra around the Korean peninsula and in North Pacific. The seakeeping criteria of the surface combatant in transit, combat, replenishment operation, and survival condition are defined by the literature review. An annual operation scenario of the surface combatant in two operation areas, i.e., advance speed and wave direction, are combined with the seakeeping analysis results to assess PTO. The main constraints of operability of the surface combatant are identified as the pitch angle and vertical velocity at the helicopter deck.

Optimal Structural Design Framework of Composite Rotor Blades Using PSGA (PSGA를 이용한 복합재료 블레이드의 최적 구조설계 프레임워크 개발 연구)

  • Ahn, Joon-Hyek;Bae, Jae-Seong;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • In this study, an optimal structural design framework has been developed for the structural design of composite helicopter blades. The optimal design framework is constructed using PSGA (Particle Swarm assisted Genetic Algorithm), which combines the genetic algorithm and particle swarm optimizer. The optimization process consists of a finite element (FE) modeling over the blade section, two-dimensional (2D) cross-sectional FE analysis, and 1D rotating blade analysis. In the design process, the geometric curves and surfaces are formed using the B-spline scheme while discretizing the sections via a FE mesh generation program Gmsh. The blade cross-sections are created in accordance with the design variables when performing the blade structural analysis. The proposed optimization design framework is applied to a modernization of the HART II (Higher-harmonic Aeroacoustics Rotor Test II) blades. It is demonstrated that an improved blade design is reached through the current optimization framework with the satisfaction of all design requirements set for the study.

The Study on Development on LUAV Software based on DO-178 (DO-178 기반 무인비행장치 소프트웨어 개발 방안에 대한 고찰)

  • Ji-hun Kwon;Dong-min Lee;Kyung-min Park;Ye-won Na;Ye-ju Kim;Gi-moung Lee;Jong-whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.382-390
    • /
    • 2023
  • The Korea market for LUAV (Light Unmanned Aerial Vehicle) weighing less than 150 kg is growing rapidly. As a result, the market for manufacturing and operating LUAV is expanding, and domestic development of parts and finished products is actively taking place. However, the flight control system and onboard software, which are key components of domestic LUAV, are largely dependent on overseas products due to the excessive cost and period required for development. This paper presented a domestic software development and certification procedure using DO-178C, a guideline for aircraft software development, and the Model-based Development method, and conducted a survey of those involved in the development, manufacturing, and certification of LUAV and analyzed the results. In addition, a case study was conducted to apply the software development plan to the helicopter FCC (Flight Control Computer).

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM (항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여)

  • Vrbancich, Julian;Fullagar, Peter K.
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.

Airloads and Structural Loads Analysis of LCH Rotor Using a Loose CFD/CSD Coupling (유체-구조 연계해석을 통한 소형민수헬기(LCH) 공력 및 구조하중 해석)

  • Lee, Da-Woon;Kim, Kiro;Yee, Kwan-Jung;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.489-498
    • /
    • 2019
  • The airloads and structural loads of Light Civil Helicopter (LCH) rotor are investigated using a loose CFD/CSD coupling. The structural dynamics model for LCH 5-bladed rotor cwith elastomeric bearing and inter-bladed damper is constructed using CAMRAD-II. Either isolated rotor or rotor-fuselage model is used to identify the effect of the fuselage on the aeromechanics behavior at a cruise speed of 0.28. The fuselage effect is shown to be marginal on the aeromechanics predictions of LCH rotor, though the effect can be non-negligible for the tail structure due to the prevailing root vortices strengthened by the fuselage upwash. A lifting-line based comprehensive analysis is also conducted to verify the CFD/CSD coupled analysis. The comparison study shows that the comprehensive analysis predictions are generally in good agreements with CFD/CSD coupled results. However, the predicted comprehensive analysis results underestimate peak-to-peak values of blade section airloads and elastic motions due to the limitation of unsteady aerodynamic predictions. Particularly, significant discrepancies appear in the structural loads with apparent phase differences.

A Study on the Invention of Synthetic Visual Analysis Model for Joseon Royal Tombs (조선 왕릉의 경관관리를 위한 통합적 시각구조분석모델 모색방안)

  • Hong, Youn-Soon;Lee, Ai-Ran;Paek, Chong-Chul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.2
    • /
    • pp.49-57
    • /
    • 2015
  • The purpose of this study is to provide the visual landscape modelling on Josun royal tombs and surrounding. The visual landscape of traditional heritage is illustrated by the main view points of analysis. This analysis examines limited view points and cannot reflect a reality of environments. Nowadays various equipments and methodologies are developed for the visual landscape research. This study used new tools for analysis which are Sketch up (3D simulation) and mini helicopter (UAV). With those tools, this research examines not only view points of the analysis but also axis views and disincentive environments as a complex analysis. First of all, the research examined 3D modelling for the virtual simulation and drew coordinates and routes for the UAV operating. Secondly, UAV followed this routes and took linear and continuous views that are real scenes. As a result, it drew 3D simulation could illustrate and control the changing of environments such as the forest density and seasonal variations. Thus, comparing both of them shows efficiently landscape analysis. Thirdly, the study compared virtual and real landscape. Using this 3D modelling, this paper able to elaborate heritage environment and surrounding which omitted by view point analysis. Although this study has limitation practice and exercise on the field, the results and suggestions contribute to the various historic heritage managements and conservations. Moreover, it helps to explain the complex and dimensional landscape analysis.

Fates of Cyfluthrin and Trichlorfon in Water and Their Impacts on Aquatic Organisms Following Aerial Application Over the Forest (삼림환경에 항공살포된 Cyfluthrin과 Trichlorfon의 물에서의 동태와 수서생물에 미치는 영향)

  • Lee, Sung-Kyu;Kim, Yong-Hwa;Kim, Tae-Wook;Roh, Jung-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.17-29
    • /
    • 1989
  • This study was conducted to evaluate the behavior in the water and the impact on aquatic organisms following aerial application of two insecticides in the forest, cyfluthrin and trichlorfon, to control the alder leaf beetle. As active ingredients, 25g of cyfluthrin and 536g of trichlorfon per ha were diluted seperately into 30L of tap water, and applied with a helicopter to the study areas. A model stream study was also conducted in a stream located adjacent to the study area in order to confirm the impact of insecticides on aquatic invertebrates. Cyfluthrin residues in water were $0.62{\mu}g/L$ (1st. application) and $78{\mu}g/L$ (2nd application) immediately after spraying. and decreased, to a non-detectable level after one day, while trichlorfon residue increased to $30.7{\mu}g/L$ one day after spraying and fluctuated for 22th day depending on precipitation after spraying. Cyfluthrin application rapidly increased the number of some drifting aquatic invertebrates during 24-hour period immediately after spraying, but had no effects on the other aquatic organisms such as fish and zooplankton. The largest increase in the number of drifting organisms following application of cyfluthrin was shown by Ephemeroptera, and followed by Trichoptera, Coleoptera, and Diptera. However, trichlorfon little affected the number of drifting aquatic invertebrates and zooplankton population.

  • PDF