• 제목/요약/키워드: Model Free Control

검색결과 566건 처리시간 0.028초

Internal Model Control of UPS Inverter using Resonance Model

  • Park J. H.;Kim D. W.;Kim J. K.;Lee H. W.;Noh T. K.;Woo J. I.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.184-188
    • /
    • 2001
  • In this paper, a new fully digital control method for single-phase UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. The inner current control loop is designed and implemented in the form of internal model control and takes the presence of computational time-delay into account. Therefore, this method provides an overshoot-free reference-to-output response. In the proposed scheme, the outer voltage control loop employing P controller with resonance model implemented by a DSP is introduced. The proposed resonance model has an infinite gain at resonant frequency, and it exhibits a function similar to an integrator for AC component. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been demonstrated by the simulation and experimental results respectively.

  • PDF

발전소의 대기오염물질 배출 예측 모델 개발 (Development of Predictive Model for Pollutants Emission from Power Plants)

  • 김민석;김경희;이인범
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.543-550
    • /
    • 1998
  • From the power plant in a steel plant, environment pollutants such as $SO_x$, $NO_x$, CO and $CO_2$ are emitted by combustion reactions of the fuels which are by-product gases, oil and liquefied natural gas(LNG). To reduce the amounts of the pollutants, it is important to build a predictive model for the emission of the pollutants. In this paper, model that predict the amounts of generated pollutants for the used fuel is developed by using Gibbs free energy minimization method[1] with the temperature correction technique. For some data set, the calculation results from this model are compared with the real emission amounts of $SO_x$, $NO_x$, and the result of the calculation by both ASPEN PLUS which is a commercial simulation software. This model shows good results and can be applied to other power plants.

  • PDF

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.

온도제어용 자동동조 PID 제어기 설계와 RTP에의 적용 (Development of auto-tuning PID controller for Temperature Control systems and Its Application to Rapid Thermal Processor)

  • 임재식;이영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.62-62
    • /
    • 2000
  • An auto-tuning PID controller which is adequate for temperature control is developed based on relay-control and pole-placement Using the critical frequency which is obtained from relay-control parameters of assumed model are identified. Pole/zero-placement PID controller is designed for the identified model. The desired pole/zeros are determined so that the closed-loop has overshoot free step response. The developed auto-tuning PID controller was successfully applied to the temperature control of RTP.

  • PDF

Styren과 acrylonitrile의 과상 공중합을 위한 회분식 반응기의 모델링 및 모사 (Modeling and simulation of a batch reactor for bulk copolymerization of styrene and acrylonitirle)

  • 유기윤;황우현;백종은;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.207-212
    • /
    • 1994
  • A mathematical model is developed for a batch reactor in which the free radical bulk copolymerization of styrene and acrylonitrile takes place. In this model, we introduce the free volume theory to quantify the diffusion controlled termination and propagation reactions, and develop a model for the chain length dependent termination reaction in the context of the pseudo kinetic rate constant method(PKRCM). The simulation results from this model are found to be in good agreement with experimental data under different copolymerization conditions. The present model can predict both the copolymer composition and the number and weight average molecular weights. These kinetic approaches provide greater insight into the performance of the batch reactor used for the free radical bulk copolymerization of styrene and acrylonitirle.

  • PDF

자율 주행 제어 인터페이스에 강건하며 빠르고 쉽게 적용 가능한 모델 독립식 종 방향 가속도 제어기 개발 및 성능 검증 (Model-Free Longitudinal Acceleration Controller Design and Implementation Quickly and Easily Applicable for Different Control Interfaces of Automated Vehicles Considering Unknown Disturbances)

  • 서다빈;조아라;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.39-52
    • /
    • 2021
  • This paper presents a longitudinal acceleration controller that can be applied to real vehicles (nonlinear and time-varing systems) with only a simple experiment regardless of the type of vehicle and the control interface structure. The controller consists of a feedforward term for fast response, a zero-throttle acceleration compensation term, and a feedback term (P gain) to compensate for errors in the feedforward term, and another feedback term (I gain) to respond to disturbances such as slope. In order to easily apply it to real vehicles, there are only two tuning parameters, feedforward terms of throttle and brake control. And the remaining parameters can be calculated immediately when the two parameters are decided. The tuning procedure is also unified so that it can be quickly and easily applied to various vehicles. The performance of the controller was evaluated using MATLAB/Simulink and Truksim's European Ben model. In addition, the controller was successfully implemented to 3 medium-sized vehicle (HMC Solati), which is composed of different control interface characteristic. Vehicle driving performance was evaluated on the test track and on the urban roads in Siheung and Seoul.

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan;Li, Hongmei;Zhang, Hengguo
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.103-115
    • /
    • 2018
  • Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

지체도 최소화를 위한 주기변동기반 동적신호시간 결정모헝 개발 (Development of a Cycle-free Based, Cooridinated Dynamic Signal Timing Model for Minimizing Delay (Using Genetic Algorithm))

  • 이영인;최완석;임재승
    • 대한교통학회지
    • /
    • 제19권1호
    • /
    • pp.115-129
    • /
    • 2001
  • 본 연구에서는 평균지체시간을 최소화하는 변동주기 (Cycle fee) 기반의 동적 신호시간 결정모형을 유전자 알고리즘을 이용하여 개발하였다. 본 모형은 실시간으로 변화하는 각 접근로의 차량 도착분포를 토대로 이동류별 지체시간을 산정하고, 교차로의 지체시간을 최소화하는 신호주기의 길이와 이동류별 녹색시간을 산출한다. 개발모형은 4개 교차로로 구성된 간선도로를 대상으로 적용하였으며, 교차로 교통상황의 변화에 따라 신호주기별로 변동하는 신호주기의 길이, 이동류별 녹색시간 그리고 교차로간 변동 연동값을 각각 산출하였다. 모형의 적용결과 산출된 변동 신호주기와 이동류별 녹색시간은 비포화상태와 포화상태 모두 TRANSYT-7F나 PASSER-II에 의하여 산출된 정주기식 신호시간보다 대기차량수, 통과교통량, 그리고 지체시간에서 있어서 더 좋은 결과를 나타내었다. 또한 본 모형은 기존모형과는 달리 연동값을 고정 값으로 설정하지 않고 각 주기가 종료되는 시점마다 교차로 지체시간을 최소화하는 주기 및 이동류별 녹색시간을 산정하므로 연동값도 신호주기별로 변동하였다. 시공도 분석결과, 본 모형에서는 모형의 결과를 산출되는 변동 연동값을 통하여 주방향 이동류의 연동효과를 나타내었다.

  • PDF

GAFC 비선형 제어기법을 적용한 쿼드로터의 자세 및 고도제어 (Nonlinear Attitude Control for Uncertain Quad-rotors Using a Global Approximation-Free Control Scheme)

  • 김영욱;박성용;이현재
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.779-787
    • /
    • 2016
  • A nonlinear control law for the quad-rotor of a low-complexity, global approximation-free from system uncertainties and external disturbances are described in this paper. The control law guarantees convergence to a small bounded error using a prescribed performance function. The stability of the proposed nonlinear control system is also proven by the Lyapunov stability theorem. The advantage of this technique is that it has a simpler form than any other nonlinear compensators and is applicable to any nonlinear systems without precise knowledge of the systems. In this paper, the proposed approach is applied to attitude/altitude control of a quad-rotor. Numerical simulations are performed to investigate the proposed nonlinear attitude control law by applying it to an uncertain quadcopter system with external disturbances.