최근 심층 컨볼루션 신경망을 활용한 이미지 분할과 물체 위치감지 연구가 활발히 진행되고 있다. 특히 네트워크의 최상위 단에서 추출한 특징 지도뿐만 아니라, 중간 은닉 층들에서 추출한 특징 지도를 활용하면 더욱 정확한 물체 감지를 수행할 수 있고 이에 대한 연구 또한 활발하게 진행되고 있다. 이에 밝혀진 경험적 특성 중 하나로 중간 은닉 층마다 추출되는 특징 지도는 각기 다른 특성을 가지고 있다는 것이다. 그러나 모델이 깊어질수록 가능한 중간 연결과 이용할 수 있는 중간 층 특징 지도가 많아지는 반면, 어떠한 중간 층 연결이 물체 분할에 더욱 효과적일지에 대한 연구는 미비한 상황이다. 또한 중간층 연결 방식 및 중간층의 특징 지도에 대한 정확한 분석 또한 부족한 상황이다. 따라서 본 연구에서 최신 깊은 신경망에서 중간층 연결의 특성을 파악하고, 어떠한 중간 층 연결이 물체 감지에 최적의 성능을 보이는지, 그리고 중간 층 연결마다 특징은 어떠한지 밝혀내고자 한다. 그리고 이전 방식에 비해 더 깊은 신경망을 활용하는 물체 분할의 방법과 중간 연결의 방향을 제시한다.
IEIE Transactions on Smart Processing and Computing
/
제2권5호
/
pp.277-281
/
2013
Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.
논문에서는 임의의 시각계에서 인간과 유사한 시각 응시점을 선택하기 위한 Saliency map 모델을 제안한다. 제안하는 모델은 영상의 에지 정보를 시각 응시점 결정을 위한 특징 기저로 이용한다. 자연 정지 흑백 영상에서 상호 독립적인 에지 성분들을 찾는데 가장 좋은 방법이라고 알려진 독립성분해석 방법을 이용한다. 인간 시각계에서 시각 수용체의 비균일 분포를 고려하기 위해 카메라와 같은 시각 센서로 받은 영상을 직접 이용하는 대신에 입력 영상으로 다중 해상도를 갖는 계층 영상을 이용한다. 컴퓨터를 이용한 시뮬레이션으로부터 제안한 Saliency map을 이용하여 주어진 임의의 이미지에 대한 시각 응시점을 구한다.
The machine-part cell formation means the grouping of similar parts and similar machines into families in order to minimize bottleneck machines, bottleneck parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. The cell formation problem is knows as a kind of NP complete problems. This paper briefly introduces the cell-formation problem and proposes a cell formation method based on the Kohonen's self-organizing feature map which is a neural network model. It also shows some experiment results using the proposed method. The proposed method can be easily applied to the cell formation problem compared to other meta-heuristic based methods. In addition, it can be used to solve large-scale cell formation problems.
본 논문에서는 잡음 환경에서 보다 강인한 성능을 얻기 위하여 음성 모델 기반의 효과적인 특징 보상 기법을 제안한다. 일반적인 모델 기반의 특징 보상 기법은 오열 음성 데이터베이스를 이용한 훈련 과정을 필요로 하므로 온라인 상에서의 적응 과정에 적합하지 않다. 제안한 방법에서는 보정 인자 추정 과정에서 병렬 모델 결합 기법을 도입함으로써 훈련 과정을 필요하지 않게 하였다. 모델의 결합 과정이 HMM 전체가 아닌 가우시안 혼합 (Mixture) 모델에만 적용이 되므로, 계산이 비교적 간단하게 되어 온라인 상에서의 모델 결합을 가능하게 하였다. 병렬적 모델 결합의 도입은 잡음 모델의 독립적인 이용을 가능하게 하였고, 본 논문에서는 MAP (Maximum A Posteriori) 적응을 통해 잡음 모델 갱신을 실시하였다 또한 잡음 오열 과정에 대한 근사화를 통해 연속적 형태의 채널 정규화 기법을 유도하여 적용하였다. 보다 효율적인 구현을 위하여 선택적인 모델 결합 방식을 도입함으로써 연산량을 줄일 수 있는 방법을 제시하였다. 제안한 특징 보상 기법이 부가적인 배경 잡음과 채널 왜곡이 존재하는 잡음 환경에서 음성 인식 시스템의 성능을 향상시키는데 효과적임을 실험을 통해 확인할 수 있었다.
This paper presents a new algorithm for the self-localization of a mobile robot using one degree perspective Invariant(Cross Ratio). Most of conventional model-based self-localization methods have some problems that data structure building, map updating and matching processes are very complex. Use of a simple cross ratio can be effective to the above problems. The algorithm is based on two basic assumptions that the ground plane is flat and two locally parallel sloe-lines are available. Also it is assumed that an environmental map is available for matching between the scene and the model. To extract an accurate steering angle for a mobile robot, we take advantage of geometric features such as vanishing points. Feature points for cross ratio are extracted robustly using a vanishing point and intersection points between two locally parallel side-lines and vertical lines. Also the local position estimation problem has been treated when feature points exist less than 4points in the viewed scene. The robustness and feasibility of our algorithms have been demonstrated through real world experiments In Indoor environments using an indoor mobile robot, KASIRI-II(KAist Simple Roving Intelligence).
산업 제조 분야에서 품질 관리는 불량률을 최소화하는 핵심 요소로, 미흡한 관리는 추가적인 비용 발생과 생산 지연을 야기할 수 있다. 본 연구는 제조품의 텍스쳐 결함 감지의 중요성을 중심으로, 보다 정밀한 결함 감지 방법을 제시한다. DFR(Deep Feature Reconstruction) 모델은 특징맵의 조합 및 재구성을 통한 접근법을 채택하였지만, 그 방식에는 한계가 있었다. 이에 따라, 우리는 제한점을 극복하기 위해 통계적 방법론을 활용한 새로운 손실 함수와 스킵 연결구조를 통합하고 파라미터 튜닝을 진행하였다. 이 개선된 모델을 MVTec-AD 데이터세트의 텍스쳐 카테고리에 적용한 결과, 기존 방식보다 2.3% 높은 결함 분할 AUC를 기록하였고, 전체적인 결함 감지 성능도 향상되었다. 이 결과는 제안하는 방법이 특징맵 조합의 재건축을 통한 결함 탐지에 있어서 중요한 기여함을 입증한다.
일반적으로 변압기의 고장진단을 위해 IEC 코드법이 사용되지만, 이 방법은 가스비율이 규정된 범위 내에 존재하지 않거나 경계조건에 있는 경우 숙련된 진단 전문가에게 의뢰하지 않고는 정확한 고장의 원인을 판정하는데 어려움이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 SOM을 이용한 전력용 변압기의 고장진단 알고리즘을 제안한다. 제안된 방법은 훈련 데이터의 경쟁학습을 통하여 자기 구성 맵을 구축한 후, 실증 데이터를 구축된 맵에 적용하여 고장의 진단이 이루어진다. 또한 클러스터링 기법에 의해 구축된 정상/고장모델과 정상 데이터를 비교함으로써 고장의 추이 및 열화정도를 분석한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해 향상된 진단결과를 보임을 확인할 수 있었다.
본 논문에서는 변이-움직임의 관계와 특징점을 이용하여 계층적으로 3차원 모델을 만드는 새로운 방법을 제안한다. 일반적으로 실제 영상으로부터 3차원 모델을 만들기 위해서는 두 영상 전체의 대응 정보를 이용해서 모델의 노드에 해당하는 부분의 깊이 정보를 구해야 한다. 그러나, 이 작업은 시간이 많이 소요될 뿐만 아니라 정확한 깊이 정보를 얻기가 어렵다. 이러한 문제점을 개선하기 위해 제안하는 방법에서는 전 영상의 대응 정보 없이 특징점에 대한 대응 정보만으로 모델을 구한다. 제안한 방법은 객체의 추출, 추출된 객체 내에서의 특징점 추출, 추출된 특징점을 이용한 계층적 3차원 모델 생성의 세 부분으로 구성되며, 제안한 방법은 3차원 모델 생성시 적은 연산이 소요될 뿐만 아니라 임의의 시각 관점 영상의 생성과 평탄 영역의 평탄성과 경계 영역의 선명성 표현에도 효과적이다.
Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.