• Title/Summary/Keyword: Model Converter

Search Result 781, Processing Time 0.028 seconds

The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability

  • Nozadian, Mohsen Hasan Babayi;Zarbil, Mohammad Shadnam;Abapour, Mehdi
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1426-1437
    • /
    • 2016
  • In different industrial and mission oriented applications, redundant or standby semiconductor systems can be implemented to improve the reliability of power electronics equipment. The proper structure for implementation can be one of the redundant or standby structures for series or parallel switches. This selection is determined according to the type and failure rate of the fault. In this paper, the reliability and the mean time to failure (MTTF) for each of the series and parallel configurations in two redundant and standby structures of semiconductor switches have been studied based on different failure rates. The Markov model is used for reliability and MTTF equation acquisitions. According to the different values for the reliability of the series and parallel structures during SC and OC faults, a comprehensive comparison between each of the series and parallel structures for different failure rates will be made. According to the type of fault and the structure of the switches, the reliability of the switches in the redundant structure is higher than that in the other structures. Furthermore, the performance of the proposed series and parallel structures of switches during SC and OC faults, results in an improvement in the reliability of the boost dc/dc converter. These studies aid in choosing a configuration to improve the reliability of power electronics equipment depending on the specifications of the implemented devices.

Operational Analysis of Energy Storage System to Improve Performance of Wind Power System with Induction Generator (농형유도 풍력발전기의 성능개선을 위한 에너지저장장치의 동작특성 분석)

  • Lee, Ji-Heon;Shim, Myong-Bo;Lee, Hye-Yeon;Han, Byung-Moon;Yang, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1138-1145
    • /
    • 2009
  • This paper presents an active and reactive power compensator for the wind power system with squirrel-cage induction generator. The output power of a wind power system changes irregularly according to the variation of wind speed. The developed system is able to continuously compensate the active and reactive power. The 3-phase inverter operates for the compensation of reactive power, while the DC/DC converter with super-capacitors operates for the compensation of active power. The operational feasibility of the proposed model was verified by simulations with PSCAD/EMTDC and the feasibility of hardware implementation was confirmed by experimental works with a scaled hardware model. The proposed compensator can be expected that developed system may be used to compensated the abrupt power variation due to sudden change of wind speed or sudden power-drop by tower effect. It can be also applied for the distributed generation and the Micro-Grid.

Performance Analysis and Experimental Verification of Buck Converter fed DC Series Motor using Hybrid Intelligent Controller with Stability Analysis and Parameter Variations

  • Thangaraju, I.;Muruganandam, M.;Madheswaran, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.518-528
    • /
    • 2015
  • This article presents a closed loop control of DC series motor fed by DC chopper controlled by an PID controller based intelligent control using ANN (Artificial Neural Network). The PID-ANN controller performances are analyzed in both steady state and dynamic operating condition with various set speed and various load torque. Here two different motor parameters are taken for analysis (220V and 110V motor parameters). The static and dynamic performances are taken for comparison with conventional PID controller and existing work. The steady state stability analysis of the system also made using the transfer function model. The equation model is also done to analysis the performances by set speed change and load torque change. The proposed controller have better control over the conventional PID controller and the reported existing work. This system is initially simulated using MATLAB / Simulink and then experimental setup done using P89V51RD2BN microcontroller.

Phosphate Removal of Aqueous Solutions using Industrial Wastes (산업폐기물을 이용한 수용액 중 인산염의 흡착 제거)

  • Kang, Ku;Kim, Young-Kee;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The present study was conducted to investigate phosphate removal from aqueous solution using industrial wastes, red mud (RM), acid treated red mud (ATRM) and converter furnace steel slag (CFSS). The chemical composition of adsorbents was analyzed using X-ray fluorescence (XRF). Batch experiments and elution experiments using water tank were performed to examine environmental factors that influences on phosphate removal. Kinetic sorption data of RM, ATRM, and CFSS were described well by the pseudo second-order kinetic sorption model, and equilibrium sorption data of all adsorbents obeyed Freundlich isotherm model. The adsorption capacities of adsorbents followed order: ATRM (7.06 mg/g)>RM (4.34 mg/g)>CFSS (1.88 mg/g). Increasing pH from 3 to 11, the amount of adsorbed phosphate on all RM, ATRM, and CFSS were decreased. The presence of sulfate and carbonate decreased the phosphate removal of RM and ATRM but did not influence on the performance of CFSS. The phosphate removal of RM, ATRM, and CFSS was greater in seawater than deionized water, resulting from the presence of cations in seawater. The water tank elution experiments showed that RM capping blocked the elution of phosphate effectively. It was concluded that the adsorbents can be successfully used for the removal of the phosphate from the aqueous solutions.

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.

Unified Modeling and Performance Prediction of Diesel $NO_x$ and PM Reduction by DOC-DPF-SCR System (DOC-DPF-SCR 시스템에 의한 디젤 배기 내 $NO_x$, 입자상 물질 저감 과정의 일관 모델링 및 성능 예측)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.110-119
    • /
    • 2008
  • Computer methods with simplified mathematical models in conjunction with empirical model parameters can be efficiently practiced into an optimization of a diesel aftertreatment system. Components of prime interests are diesel particulate filter, diesel oxidation catalyst and de-$NO_x$ catalytic converter. de-$NO_x$, de-PM, and de-HC processes in each part are individually modeled, formulated and then combined into an integrated analysis procedure for a unified simulation of the diesel emission aftertreatment. The model is empirically tuned and validated with comprehensive engine and laboratory data. The effects of emission species and space velocity on the $NO_x$ and soot reductions are parametrically investigated. A lowered $NO_2/NO_x$ ratio due to PM oxidation in DPF contributes to promote the $NO_x$ reduction by SCR at intermediate gas temperatures. $NO_x$ reduction is inert to the PM oxidation at high temperatures. Rate of PM trapping strongly depends on temperature and $NO_x$ concentration.

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.

Application of energy function control strategy to VSC based UPFC Model (전압원 컨버터 기반의 UPFC 모델에 대한 에너지 함수 제어전략의 적용)

  • Kook, Kyung-Soo;Oh, Tae-Kyoo;Chun, Yeong-Han;Kim, Hak-Man;Kim, Tai-Hyun;Jeon, Jin-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.259-261
    • /
    • 2000
  • UPFC(Unified Power Flow Controller) consists of two voltage sourced converter(VSC)s inserted into AC system through series and parallel coupling transformer, where two VSCs are linked by capacitor at DC-side. Since VSC acts as an AC voltage source behind a reactance, where both magnitude and phase angle of the source are controllable, UPFC can be represented by the equation related to input-output relation of two VSCs. Voltage control of DC-link capacitor provides the path of real power flow between two VSCs. While UPFC is controlled for maintaining the given reference value in steady state, it should be controlled for damping power oscillation in dynamics. For such a control objective, the control strategy based on the energy function was proposed and has been shown to be effect and robust for damping power oscillation of power system. In this paper, UPFC model based on the VSC was analysed and applied to power-flow control and stability analysis. The control strategy based on the energy function is adopted for damping power oscillation of power system. The effectiveness of proposed control strategy was verified by simulation study

  • PDF

Line Voltage Regulation of Urban Transit Systems Using Supercapacitors (슈퍼커패시터를 이용한 도시형 철도의 가선전압 안정화)

  • Son, Kyoung-Min;Choi, Jae-Ho;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.481-487
    • /
    • 2009
  • This paper proposes a regulation method of DC line voltage for urban transit system fluctuated during the acceleration or deceleration by using supercapacitor. Supercapacitor is modelled electrically under the assumption of three different time constants of RC circuits with variable capacitances depending on the voltage. And its parameters are determined by the experimental measurements. The energy storage system using supercapacitors is installed based on this model, and the proposed model is tested through the simulations and experiments, and the controller for charging and discharging is designed. Finally, it is tested at Kyoungsan test site for the urban light rail road system and the energy saving effect is evaluated economically.

Comparative Analysis on the Mock-ups' Configuration and Monitoring Protocol System of Advanced Daylighting Systems for Daylighting Experiment - Focused on IEA SHC Task21- (첨단채광시스템 실험용 Mock-Up 모형의 형상 및 모니터링 프로토콜 시스템에 관한 비교분석 - IEA SHC Task21을 중심으로-)

  • Jeong, In-Young;Choi, Sang-Hyun;Kim, Jeong-Tai
    • KIEAE Journal
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • Innovative daylighting systems in buildings in various climatic zones around the world have been developed under the IEA SHC Task21. The performance assessment were obtained by monitoring the most systems using full-scale test model rooms or actual buildings under real sky conditions. This study aims to analyze the configuration and monitoring system of the nine Mock-up models of the IEA SHC Task21 comparatively. For the purpose, the geometry of the test rooms (length, width, height, window area, glazed area and occupied), reflectance of walls, floor and ceiling, transmittance of glazing (transmittance for hemispherical irradiation, normal irradiation and U-value) were compared. And equipment for measurement (manufacturer, range, calibration, maximum calibration error, cosine response error, fatigue error), and data acquisition system (manufacturer, type, number of differential analogue input channels, A/D converter resolution in bits, data acquisition software) were also analyzed comparatively. Some findings of these experimental methodology of standard monitoring have been proven to be a valuable one for future assessment of advanced daylighting systems in our country.