• Title/Summary/Keyword: Model Converter

Search Result 780, Processing Time 0.022 seconds

A Study on the Basic Design of a Torque Converter Using Equivalent Performance Model (등가 성능모델을 이용한 토크 컨버터의 기초 설계에 관한 연구)

  • Jang, Wook-Jin;Lim, Weon-Sig;Lee, Jang-Mooee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.369-377
    • /
    • 1997
  • The torque converter, a major part of automatic transmissions, has many difficulties in analysis due to the factors such as power transmission through fluid flow, complex internal geometry, and various operating conditions. Because of such difficulties, the dynamic analysis and design of a torque converter are generally carried out by using equivalent performance model which is based on the concept of mean flow path. Since the design procedures of a torque converter are essential technology of automotive industry, the details of the procedures are rarely published. In this study, the basic design procedures of a torque converter are systemized and coded based on the equivalent performance model. The mathematical methods to deal with mean flow path determination and the core-shape are developed. And by using this model, the method of determination of performance parameters satisfying the requested performance is proposed. Finally, to embody the three-dimensional shape, the intermediate blade angles which maximize the tractive performance are determined and laid out.

Numerical Analysis on the Pressure Characteristic and Flow Uniformity in a Ceramic Catalytic Converter for Motorcycle (2륜 자동차용 세라믹 촉매변환기내 압력특성과 유동균일도에 관한 수치해석)

  • Yi, Chung-Seub;Lee, Yonghun;Jeong, Hyomin;Chung, Han-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.376-383
    • /
    • 2007
  • This research represents the catalytic converter for application in the motorcycle. We have to consider about catalytic converter for reducing exhaust gas strength regarding the displacement volume enlargement. The catalytic converter has been widely used to satisfy the regulations of pollutant emissions from automobiles. Recently, all catalytic converter researches are about automobile. Study about motorcycle catalytic converter has not been conducted yet. In this study, flow uniformity and pressure distribution were simulated in the monolithic inlet of catalytic converter for motorcycle. Exhaust pulsation pressure was set as transient condition about. It was found that flow uniformity shown in base model (0.85) was lower than megaphone model (0.98).

Duty Cycle Modeling for Average Model of Buck Converter Employing Hysteresis Control (히스테리시스 제어를 사용하는 Buck Converter의 평균모델을 위한 Duty Cycle 모델링)

  • 홍성수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.330-337
    • /
    • 1998
  • A duty cycle average model is mathematically developed for an average model of buck converter employing hysteresis c control. The derived model is able to simultaneously deal with both the continuous conduction mode (CCM) and the d discontinuous conduction mode (DCM) in the time domain. Also. taking advantage of the MAST language of SABER. a t template of the proposed duty cycle average model is built for the time and frequency domain analyses. The accuracy of t this template is verified through the computer simulations.

  • PDF

A New Approach to Reduced-Order Modeling of Multi-Module Converters

  • Park, Byung-Cho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.92-98
    • /
    • 1997
  • This paper presents a new approach to obtaining a reduced-order model for multi-module converters. The proposed approach can be used to derive the reduced-order model for a wide class of multi-module converters including pulse-width-modulated (PWM) converters, soft-switched PWM converters, and resonant converters. The reduced-order model has the structure of a conventional single-module converter while preserving the dynamics of the original multi-module converter. Derivation procedures and the use of the reduced-order model is demonstrated using a three-module boost converter.

  • PDF

Wind Power System using Doubly-Fed Induction Generator and Matrix Converter (매트릭스컨버터와 이중여자유도발전기를 사용한 풍력발전시스템)

  • Lee, Dong-Geun;Kwon, Gi-Hyun;Han, Byung-Moon;Li, Yu-Long;Choi, Nam-Sup;Choy, Young-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.985-993
    • /
    • 2008
  • This paper proposes a new DFIG(Doubly-Fed Induction Generator) system using matrix converter, which is very effectively used for interconnecting the wind power system to the power grid. The operation of proposed system was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The laboratory scaled-model was built using a motor-generator set with vector drive system, and a matrix converter with DSP(Digital Signal Processor). The operation of scaled-model was tested by modeling the specific variable-speed wind turbine using the real wind data in order to make the scaled-model simulate the real wind power system as close as possible. The simulation and experimental results confirm that matrix converter can be applied for the DFIG system.

Modeling and Analysis of the Fractional Order Buck Converter in DCM Operation by using Fractional Calculus and the Circuit-Averaging Technique

  • Wang, Faqiang;Ma, Xikui
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1008-1015
    • /
    • 2013
  • By using fractional calculus and the circuit-averaging technique, the modeling and analysis of a Buck converter with fractional order inductor and fractional order capacitor in discontinuous conduction mode (DCM) operations is investigated in this study. The equivalent averaged circuit model of the fractional order Buck converter in DCM operations is established. DC analysis is conducted by using the derived DC equivalent circuit model. The transfer functions from the input voltage to the output voltage, the duty cycle to the output voltage, the input impedance, and the output impedance of the fractional order Buck converter in DCM operations are derived from the corresponding AC-equivalent circuit model. Results show that the DC equilibrium point, voltage ratio, and all derived transfer functions of the fractional order Buck converter in DCM operations are affected by the inductor order and/or capacitor order. The fractional order inductor and fractional order capacitor are designed, and PSIM simulations are performed to confirm the correctness of the derivations and theoretical analysis.

The Parameter Estimation of DC-DC Converter by System Identification Method (시스템 식별 기법을 이용한 DC-DC 컨버터 파라메터 추정)

  • Jeon, Jin-Hong;Kim, Tae-Jin;Kim, Kwang-Su;Kim, Kwang-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.503-506
    • /
    • 2003
  • In this paper, we present the results of parameter estimation for do-dc converter model by system identification. The parameter estimation for dc-dc converter aims at the diagnosis of its operating status. we applied the system identification method for parameter estimation. For verification of estimated parameter, we compare bode plot of estimated system transfer function and measurement results of HP4194 instrument.

  • PDF

Numerical calculation of torque converter flow using interrow mixing model (익렬간 혼합모델을 이용한 토크 컨버터 유동장의 수치계산)

  • Park, Jae-In;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.326-335
    • /
    • 1998
  • In this study, a steady three-dimensional incompressible turbulent flow within a torque converter was numerically analyzed with the introduction of interrow mixing model. Mixing planes were introduced to exchange the flow informations between two adjacent elements of the torque converter. The mixing planes were installed among three elements of the torque converter. Therefore, in the present method, it could be possible to calculate the flow-filed within the torque converter without any assumption of circulating flow rates or any extension of boundaries toward the upstream and the downstream for each element. The numerically calculated performances of the torque converter were in good agreement with experimental results, and the complex flow patterns were be observed according to design and off-design condition. As a conclusion, it was found that the present numerical method was very effective in the steady flow analysis of torque converters.

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.

Control Strategy for Buck DC/DC Converter Based on Two-dimensional Hybrid Cloud Model

  • Wang, Qing-Yu;Gong, Ren-Xi;Qin, Li-Wen;Feng, Zhao-He
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1684-1692
    • /
    • 2016
  • In order to adapt the fast dynamic performances of Buck DC/DC converter, and reduce the influence on converter performance owing to uncertain factors such as the disturbances of parameters and load, a control strategy based on two-dimensional hybrid cloud model is proposed. Firstly, two cloud models corresponding to the specific control inputs are determined by maximum determination approach, respectively, and then a control rule decided by the two cloud models is selected by a rule selector, finally, according to the reasoning structure of the rule, the control increment is calculated out by a two-dimensional hybrid cloud decision module. Both the simulation and experiment results show that the strategy can dramatically improve the dynamic performances of the converter, and enhance the adaptive ability to resist the random disturbances, and its control effect is superior to that of the current-mode control.