• Title/Summary/Keyword: Model, experimental

Search Result 19,165, Processing Time 0.048 seconds

Model-Robust G-Efficient Cuboidal Experimental Designs (입방형 영역에서의 G-효율이 높은 Model-Robust 실험설계)

  • Park, You-Jin;Yi, Yoon-Ju
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.118-125
    • /
    • 2010
  • The determination of a regression model is important in using statistical designs of experiments. Generally, the exact regression model is not known, and experimenters suppose that a certain model form will be fit. Then an experimental design suitable for that predetermined model form is selected and the experiment is conducted. However, the initially chosen regression model may not be correct, and this can result in undesirable statistical properties. We develop model-robust experimental designs that have stable prediction variance for a family of candidate regression models over a cuboidal region by using genetic algorithms and the desirability function method. We then compare the stability of prediction variance of model-robust experimental designs with those of the 3-level face centered cube. These model-robust experimental designs have moderately high G-efficiencies for all candidate models that the experimenter may potentially wish to fit, and outperform the cuboidal design for the second-order model. The G-efficiencies are provided for the model-robust experimental designs and the face centered cube.

A Study on the Development of Scientific Experimental Model for the Home Economics Textiles Class in High School (고등학교 가정과 피복재료 탐구실험학습 모형 개발)

  • 라상숙;이전숙;김용숙
    • Journal of Korean Home Economics Education Association
    • /
    • v.10 no.1
    • /
    • pp.153-169
    • /
    • 1998
  • The purposes or this study were to develop the scientific experimental model, experimental guidelines for teachers, experiment planning & report form for students, and evaluation scales for the Home Economics Textiles class in high school. First, through review of literature concerned, scientific experimental model was defined, and the usefulness of this model on the teaching situation testified on other subjects such as Physics and Bilolgy, was reviewed. Secondly, scientific experimental model, experimental guidelines for teachers, experiment planning & report form for students, and evaluation scale were developer on the bases on APU evaluation model, experimental guidelines for teachers, experiment planning & report form for students, evaluation scale applicable to the teaching situation ere established by analysing the significant differences scientifically.

  • PDF

Experimental Performance Evaluation of Token-Passing Mechanism in Foundation Fieldbus (Foundation Fieldbus에서 토큰-패싱 전송 방식의 실험적 성능 평가)

  • Bae, Jin-Woon;Hong, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.111-113
    • /
    • 2006
  • FOUNDATION fieldbus provides scheduling and token-passing services for cyclic and sporadic data respectively. In this paper, we evaluate the delay performance of token-passing mechanism in FOUNDATION fieldbus network system using an experimental model. This paper introduces a method of developing an experimental model which consists of 10 nodes of FOUNDATION fieldbus communication device. Using the experimental model, we evaluate the delay performance of time-critical and time-available data with respect to change of TTRT parameter.

  • PDF

Densification Analysis for SiC Powder under Cold Compaction (냉간압축 하에서 실리콘 카바이드 분말의 치밀화해석)

  • Park, Hwan;Kim, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.589-595
    • /
    • 2000
  • Densification behavior of SiC powder was investigated under cold compaction. A special form of the Cap model was proposed from experimental data of SiC powder under triaxial compression. To compare with experimental data of SiC powder under cold compaction, the proposed constitutive model was implemented into a finite element program (ABAQUS). Finite element calculations from the Cam-Clay model and the modified Drucker-Prager model were also compared with experimental data of SiC powder. The agreements between experimental data and finite element results obtained from the proposed constitutive model are reasonably good. In die pressing, finite element results obtained from the Cam-Clay model and the modified Drucker-Prager model, however, show lower average density of SiC powder compacts compared to experimental data.

  • PDF

A Study of Applicability of a RNG $k-\varepsilon$ Model (RNG $k-\varepsilon$ 모델의 적용성에 대한 연구)

  • Yang, Hei-Cheon;Ryou, Hong-Sun;Lim, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

A study on a present condition of research on the experimental model in oriental medicine (실험동물의 병증(病證) 모형에 대한 연구현황 소고 - 중의(中醫) 자료를 중심으로 -)

  • Choi, Sun-Mi
    • Korean Journal of Oriental Medicine
    • /
    • v.1 no.1
    • /
    • pp.69-99
    • /
    • 1995
  • In order to develop experimental research in oriental medicine, it is necessary to make experimental model of diagnostic pattern(證), On model of the condition of a disease maked in china, there are cold-pattern(寒證), heat-pattern(熱證), deficiency of vital energy-pattern(氣虛證), blood-deficiency-pattern(血虛證), yin-deficiency-pattern(陰虛證), yang-deficiency-pattern(陽虛證), deficiency of both yin and yang-pattern(陰陽俱虛證), yang-exhaustion-pattern(亡陽證), blood stasis-pattern(血瘀證), pattern of defferential diagnosis according to states of viscera(臟腑辨證).

  • PDF

A Marginal Probability Model for Repeated Polytomous Response Data

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.577-585
    • /
    • 2008
  • This paper suggests a marginal probability model for analyzing repeated polytomous response data when some factors are nested in others in treatment structures on a larger experimental unit. As a repeated measures factor, time is considered on a smaller experimental unit. So, two different experiment sizes are considered. Each size of experimental unit has its own design structure and treatment structure, and the marginal probability model can be constructed from the structures for each size of experimental unit. Weighted least squares(WLS) methods are used for estimating fixed effects in the suggested model.

  • PDF

Centrifuge Model Experiments on Behaviors of Single Pile (단말뚝 거동에 관한 원심모형실험)

  • Yoo, Nam-Jae;Lee, Myeung-Woog;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.111-118
    • /
    • 1997
  • This thesis is an experimental research of investigating behavior of single pile, subjected to the vertical compression loads, using the centrifuge facility located in the geotechnical engineering laboratory in Kangwon National University. Centrifugal model experiments of model pile were carried out changing diameter of model pile, relative density of sandy ground and the gravitational level applied in the centrifuge. Thus, their effects on the load-settlement behavior and the ultimate bearing capacity of pile were investigated. Experimental results obtained from centrifuge model tests were compared with the theoretical or semi-empirical equations to analyze values of ultimate bearing capacity of model pile. When we compare the ultimate bearing capacity of experimental results with the ultimate bearing capacity of theorical results, the experimental results appear more higher in the De Beer method and Meyerhof. Expecially, Terzaghi method is very same as the experimental results normally.

  • PDF

An experimental-computational investigation of fracture in brittle materials

  • De Proft, K.;Wells, G.N.;Sluys, L.J.;De Wilde, W.P.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.227-248
    • /
    • 2004
  • A combined experimental-computational study of a double edge-notched stone specimen subjected to tensile loading is presented. In the experimental part, the load-deformation response and the displacement field around the crack tip are recorded. An Electronic Speckle Pattern Interferometer (ESPI) is used to obtain the local displacement field. The experimental results are used to validate a numerical model for the description of fracture using finite elements. The numerical model uses displacement discontinuities to model cracks. At the discontinuity, a plasticity-based cohesive zone model is applied for monotonic loading and a combined damage-plasticity cohesive zone model is used for cyclic loading. Both local and global results from the numerical simulations are compared with experimental data. It is shown that local measurements add important information for the validation of the numerical model. Consequently, the numerical models are enhanced in order to correctly capture the experimentally observed behaviour.

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.