• Title/Summary/Keyword: Mode of operation for ships

Search Result 23, Processing Time 0.02 seconds

Hierarchical Control Scheme for Three-Port Multidirectional DC-DC Converters in Bipolar DC Microgrids

  • Ahmadi, Taha;Hamzeh, Mohsen;Rokrok, Esmaeel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1595-1607
    • /
    • 2018
  • In this paper, a hierarchical control strategy is introduced to control a new three-port multidirectional DC-DC converter for integrating an energy storage system (ESS) to a bipolar DC microgrid (BPDCMG). The proposed converter provides a voltage-balancing function for the BPDCMG and adjusts the states of charge (SoC) of the ESS. Previous studies tend to balance the voltage of the BPDCMG buses with active sources or by transferring power from one bus to another. Furthermore, the batteries available in BPDCMGs were charged equally by both buses. However, this power sharing method does not guarantee efficient operation of the whole system. In order to achieve a higher efficiency and lower energy losses, a triple-layer hierarchical control strategy, including a primary droop controller, a secondary voltage restoration controller and a tertiary optimization controller are proposed. Thanks to the multi-functional operation of the proposed converter, its conversion stages are reduced. Furthermore, the efficiency and weight of the system are both improved. Therefore, this converter has a significant capability to be used in portable BPDCMGs such as electric DC ships. The converter modes are analyzed and small-signal models of the converter are extracted. Comprehensive simulation studies are carried out and a BPDCMG laboratory setup is implemented in order to validate the effectiveness of the proposed converter and its hierarchical control strategy. Simulation and experimental results show that using the proposed converter mitigates voltage imbalances. As a result, the system efficiency is improved by using the hierarchical optimal power flow control.

Preliminary Design of PNUSAT-1 Cubesat for Vessel Monitoring (선박 모니터링을 위한 PNUSAT-1 큐브위성 시스템 예비 설계)

  • Kim, Haelee;Cho, Dong-hyun;Lee, Sanghoon;Park, Chanhwi;Lim, Ha Kyeong;Kim, Geonwoo;Kwak, Minwoo;Lee, Changhyun;Kim, Shinhyung;Koo, Inhoi;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.137-146
    • /
    • 2022
  • AIS(Automatic Identification System) is a device that automatically transmits and receives ship information and is mounted on the ship. AIS information of ships near the coast can be received on the ground, but when going out to sea more than 50 nautical miles, communication with the ground is cut off. To solve this problem, ship information can be transmitted to the ground through an AIS satellite equipped with an AIS receiver. There is no case of AIS satellite development in Korea yet, and many domestic shipping companies are using overseas AIS services. PNUSAT-1 is a 1U+ CubeSat, developed by Pusan National University, and it is equipped with an AIS receiver for monitoring of ships and transmitting ship information to the ground. Since the mission data of PNUSAT-1 is in text format, the data size is not large. In consideration of this, communication equipment, low-precision sensors, and actuators were selected. In this paper, system preliminary design of PNUSAT-1 was performed, requirements for mission performance, operation scenario and mode design, hardware and software selection, and preliminary design of each subsystem were performed.

Real Time Measurement of Exhaust Emissions from Main Engine using Training Ship (실습선을 이용한 주 추진기관의 배기배출물의 실시간 계측)

  • Choi, Jung-Sik;Lee, Sang-Deuk;Lee, Kyoung-Woo;Chun, Kang-Woo;Nam, Youn-Woo;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.531-537
    • /
    • 2013
  • In this study, we conducted real-time measurement at the ship arrivals and departures at the port and at a constant speed of 150 rpm for exhaust emissions from a main engine installed on the training ship, HANBADA, of Korea Maritime University. The result showed that the concentration of nitrogen oxide was measured in the range of 800 ppm to 1,000 ppm at constant speed mode. On the other hand, the concentration of nitrogen oxide during ship arrivals and departures was significantly fluctuated between 210 ppm and 1,230 ppm. And, the concentration of carbon oxide at the arrivals and departures was also larger than that of at constant speed mode. These results show that the ship maneuvering skills to prevent a sudden load change of main engine at the arrivals and departures of ship is needed. Additionally, it means that the difference of exhaust emissions generated between the constant speed mode and the arrival/departure has to be considered when invented many technologies are adopted into the reduction technologies of air pollutants from ships.