• 제목/요약/키워드: Mode of failure

검색결과 2,213건 처리시간 0.033초

FMEA를 활용한 공동주택 공기단축 영향요인 평가방법에 관한 기초연구 (A Basis Study on Assessment Method of Influence Factors about the Shortening of the Construction Time Applying FMEA in Apartment Housing)

  • 하희윤;안병주;이윤선;김재준
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2007년도 정기학술발표대회 논문집
    • /
    • pp.383-386
    • /
    • 2007
  • 최근 국내 건설공사에 있어서 공동주택이 차지하는 비율은 나날이 증가하고 있다. 건설공사에서 공기는 직접적으로 건설사업비에 영향을 미치기 때문에 매우 중요하다. 따라서 국내에서도 공기단축을 위해 많은 노력을 하고 있는 실정이다. 이러한 추세에 따라서 공기를 단축하기 위해서는 공기에 영향을 미치는 중요요인을 분석하고, 도출된 요인들을 효과적으로 평가하기 위한 방법이 필요하다. 본 연구에서는 공동주택의 공기단축에 미치는 영향요인을 평가하는 방법으로 FMEA 기법을 제안하고자 한다.

  • PDF

기계유압식 무단변속기용 기어트레인에 대한 위험속도 해석 (The Critical Speed Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission)

  • 배명호;배태열;최성광
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.71-78
    • /
    • 2017
  • The power train of hydro-mechanical continuously variable transmission (HMCVT) for 8-ton class forklift includes hydro-static units, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The helical & planetary gears are key components of HMCVT's power train wherein strength problems are the main concerns including gear bending stress, gear compressive stress, and scoring failure. Many failures in power train gears of HMCVT are due to the insufficient gear strength and resonance problems caused by major excitation forces, such as gear transmission error of mating gear fair in the transmission. In this study, wherein excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate the power train gears' critical speeds. Mode shapes and natural frequencies of the power train gears are calculated by CATIA V5. These are used to predict resonance failures by comparing the actual working speed range with the critical speeds due to the gear transmission errors of HMCVT's power train gears.

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.

안전과학 패러다임의 전환과 환자안전의 개선 (What Will We Learn from the Paradigm Shift in Safety Science for Improving Patient Safety?)

  • 이상일
    • 한국의료질향상학회지
    • /
    • 제27권1호
    • /
    • pp.2-9
    • /
    • 2021
  • Patient safety remains one of the most important health care issues in Korea. To improve patient safety, we have introduced concepts from the field of safety science such as the Swiss cheese model, and adopted several methodologies previously used in other industries, including incident reporting systems, root cause analysis, and failure mode and effects analysis. This approach has enabled substantial progress in patient safety to be made through undertaking patient safety improvement activities in hospitals that are systems-based, rather than individual-based. However, these methods have the shared limitation of focusing on negative consequences of patient safety. Therefore, the paradigm shift from Safety I to Safety-II in safety science becomes the focus of our discussion. We believe that Safety-II will complement, rather than replace, Safety-I in the discipline of patient safety. In order to continuously advance patient safety practices in Korea, it is necessary that Korea keeps abreast of the recent global trends and development in safety science. In addition, more focus should be placed on testing the feasibility of new patient safety approaches in real-world situations.

Behavior of short columns constructed using engineered cementitious composites under seismic loads

  • Syed Humayun Basha;Xiaoqin Lian;Wei Hou;Pandeng Zheng;ZiXiong Guo
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.565-582
    • /
    • 2023
  • The present research reports the application of engineered cementitious composites (ECC) as an alternative to conventional concrete to improve the seismic behavior of short columns. Experimental and finite element investigation was conducted by testing five reinforced engineered cementitious composite (RECC) concrete columns (half-scale specimens) and one control reinforced concrete (RC) specimen for different shear-span and transverse reinforcement ratios under cyclic lateral loads. RECC specimens with higher shear-span and transverse reinforcement ratios demonstrated a significant effect on the column lateral load behavior by improving ductility (>5), energy dissipation capacity (1.2 to 4.1 times RC specimen), gradual strength degradation (ultimate drift >3.4%), and altering the failure mode. The self-confinement effect of ECC fibers maintained the integrity in the post-peak region and reserved the transmission of stress through fibers without noticeable degradation in strength. Finite element modeling of RECC specimens under monotonic incremental loads was carried out by adopting simplified constitutive material models. It was apprehended that the model simulated the global response (strength and stiffness) and damage crack patterns reasonably well.

SiC 휘스커 강화 Al2O3 복합재료의 고인화 (Toughening of SiC Whisker Reinforced Al2O3 Composite)

  • 김연직;송준희
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

A simplified theory of adaptive bone elastic beam buckling

  • Ramtani, Salah;Bennaceur, Hamza;Outtas, Toufik
    • Advances in biomechanics and applications
    • /
    • 제1권3호
    • /
    • pp.211-225
    • /
    • 2014
  • The usual assumption that the increase of fractures in aging bone is due entirely to lower bone density is taken back with respect to the possibility that aging bone fractures result from a loss of stability, or buckling, in the structure of the bone lattice. Buckling is an instability mode that becomes likely in end-loaded structures when they become too slender and lose lateral support. The relative importance of bone density and architecture in etiology bone fractures are poorly understood and the need for improved mechanistic understanding of bone failure is at the core of important clinical problems such as osteoporosis, as well as basic biological issues such as bone formation and adaptation. These observations motivated the present work in which simplified adaptive-beam buckling model is formulated within the context of the adaptive elasticity (Cowin and Hegedus 1976, Hegedus and Cowin 1976). Our results indicate that bone loss activation process leads systematically to the apparition of new elastic instabilities that can conduct to bone-buckling mechanism of fracture.

A Review of EOS Thermal Control Logic for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.452-455
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. EOS (Electro-Optic System) for MSC mainly consists of PMA (Primary Mirror Assembly), SMA (Secondary Mirror Assembly), HSTS (High Stability Telescope Structure) and DFPA (Detector Focal Plane Assembly). High performance of EOS makes it possible for MSC system to provide high resolution and high quality ground images. Temperature of the EOS needs to be controlled to be in a specific range in order not to have any thermal distortion which can cause performance degradation. It is controlled by full redundant CPU based electronics. The validity of thermistor readings can be checked because a few thermistors are installed on each control point on EOS. Various kinds of thermal control logics are used to prevent 'Single Point Failure'. Control logic has a few set of database in order not to be corrupted by SEU (Single Event Upset). Even though the thermal control logic is working automatically, it can also be monitored and controlled by ground-station operator. In this paper, various ways of thermal control logic for EOS in MSC will be presented, which include thermal control mode and logic, redundancy design and status monitoring and reporting scheme.

  • PDF

각형강관을 이용한 RC 유공보의 구조 특성 연구 (A Study on the Structural Properties of RC Beams with Web Openings using Square Steel Tube)

  • 이승조;박정민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.85-86
    • /
    • 2010
  • 본 연구에서는 유공부분을 각형강관으로 보강한 것으로서 강도, 파괴성상, 연성 등의 구조적인 특성을 연구하였다. 주된 변수로는 1) 유공의 유무, 2) 유공의 수, 3) 유공의 위치 등이다. 정하중 실험결과 PFBS1A와 PFBS2A의 실험체의 성능이 가장 뛰어난 것으로 나타났다. 전반적으로 유공의 위치를 최대모멘트영역(M), 전단영역 (S), 모멘트+전단영역 (M+S)에 두었을 때 최대모멘트영역에 둔 실험체에서 무공보보다는 강도와 연성능력의 향상을 볼 수 있었다.

  • PDF

구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구 (A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System)

  • 조인기;김형석;김승덕;강문명
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF