• Title/Summary/Keyword: Mode interference

Search Result 334, Processing Time 0.027 seconds

Development of a Fixed Radio-Relay Link Design Simulator (M/W 회선설계 시뮬레이터 개발)

  • 김혁제;조삼모;이성수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.656-664
    • /
    • 1997
  • This paper introduces a fixed radio-relay link design simulator with which we can select the station site and the frequency and can predict the performance of the radio-relay links. The simulator analyzes the path profile, the fading effects, the availability, the rain attenuation and the interference of the cosidered radio path using the digital terrain data and the rain intensity data. The calculation algorithms used in this simulator are mostly from the recommendations of the ITU-R. All the modules of the simulator are performed in full GUI mode and the input and output parameters are displayed interactively. This simulator could be used to the fixed radio-relay link design and the LMDS design.

  • PDF

The Improvement in Signal Integrity of FT-ICR MS (FT-ICR 질량분석기의 신호 충실성 향상)

  • Kim, Seung-Yong;Kim, Seok-Yoon;Kim, Hyun Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.201-204
    • /
    • 2011
  • For efficient noise reduction in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrum, a new algorithm was proposed. The suggested algorithm reduces white and electrical noise, and it improves signal-to-noise ratio. This algorithm has been optimized to reduce the noise more efficiently using the traces of signal level. The algorithm has been efficiently combined with derivative window to improve the resolution as well S/N. Time domain data was corrected for DC voltage interference. $t^n$ window was applied in time domain data to improved the resolution. However, $t^n$ window can improve the signal resolution, it will also increase the noise level in frequency domain. Therefore, newly developed noise reduction algorithm will be applied to make a balance between resolving power and S/N ratio for magnitude mode. The trace algorithm can determine the current data point with several data points (mean, past data, calculated past data). In the current calculations, we assumed data points with S/N ratio more than 3 were considered as signal data points. After the windowing and noise reduction, both resolution and signal-to-noise ratio were improved. This algorithm is applicable more efficiently to frequency dependent noise and large size data.

The Characteristics of Planar EMI Filter with Bi-Ground Layers Considering Impedance Mismatching

  • Wang, Shishang;Song, Zheng;Lou, Qianceng
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1200-1208
    • /
    • 2016
  • Planar electromagnetic interference (EMI) filter has significant engineering significance to power electronic system integration and miniaturization. However, the value of differential mode capacitance cannot meet the demand of noise suppression because of the size limit of ceramics. In this case, the EMI filter of novel multilayers is recommended to address this issue. A novel integrated structure of EMI filter based on multilayer ceramic is proposed in this study. The inductance and capacitance of the new structure can be designed separately, which is an advantage in manufacturing. Insertion loss is measured more closely to the actual situation in this study, which is different from the condition where source and load impedances are both 50 Ω. In the process of designing a novel EMI filter, noise impedance is considered. Moreover, the prototype is created and applied to a small switching power supply, which verifies the effectiveness of the developed EMI filter.

Analysis of COMS In-Orbit Test for Moment of Inertia Measurement (천리안위성 관성모멘트의 궤도상 측정 시험 분석)

  • Park, Keun-Joo;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • In the attitude and orbit control subsystem design, the moment of inertia of the satellite is the major contributor to be considered. Satellites equipped with large solar arrays need to measure the moment of inertia accurately to avoid the interference of the thruster actuation period with its flexible mode. In this paper, the in-orbit tests of COMS to measure the moment of inertia are described. Then, the differences between the measured through in-orbit test and the predicted are compared. Finally, it is verified that the differences are below uncertainty bounds considered in the critical design of COMS attitude and orbit control subsystem.

Current-induced Phase Demodulation Using a PWM Sampling for a Fiber-optic CT

  • Park, Hyoung-Jun;Lee, June-Ho;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.240-244
    • /
    • 2010
  • In this work, we used PWM sampling for demodulation of a fiber-optic interferometric current transformer. The interference signal from a fiber-optic CT is sampled with PWM triggers that produce a 90-degree phase difference between two consecutively sampled signals. The current-induced phase is extracted by applying an arctangent demodulation and a phase unwrapping algorithm to the sampled signals. From experiments using the proposed demodulation, we obtained phase measurement accuracy and a linearity error, in AC current measurements, of ~2.35 mrad and 0.18%, respectively. The accuracy of the proposed method was compared with that of a lock-in amplifier demodulation, which showed only 0.36% difference. To compare the birefringence effects of different fiber-optic sensor coils, a flint glass fiber and a standard single-mode fiber were used under the same conditions. The flint glass fiber coil with a Faraday rotator mirror showed the best performance. Because of the simple hardware structure and signal processing, the proposed demodulation would be suitable for low-cost over-current monitoring in high voltage power systems.

Computationally-Efficient Algorithms for Multiuser Detection in Short Code Wideband CDMA TDD Systems

  • De, Parthapratim
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper derives and analyzes a novel block fast Fourier transform (FFT) based joint detection algorithm. The paper compares the performance and complexity of the novel block-FFT based joint detector to that of the Cholesky based joint detector and single user detection algorithms. The novel algorithm can operate at chip rate sampling, as well as higher sampling rates. For the performance/complexity analysis, the time division duplex (TDD) mode of a wideband code division multiplex access (WCDMA) is considered. The results indicate that the performance of the fast FFT based joint detector is comparable to that of the Cholesky based joint detector, and much superior to that of single user detection algorithms. On the other hand, the complexity of the fast FFT based joint detector is significantly lower than that of the Cholesky based joint detector and less than that of the single user detection algorithms. For the Cholesky based joint detector, the approximate Cholesky decomposition is applied. Moreover, the novel method can also be applied to any generic multiple-input-multiple-output (MIMO) system.

Collective Excitations in Thin K Films on Al(111)

  • Kim, Bong-Ok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.137-137
    • /
    • 2000
  • The surface collective modes of thin K films deposited on Al(111) have been investigated using frequency dependent photoyield measurements and momentum resolved inelastic electron scattering. Jellium based theoretical calculations have predicted a richer set of features in the thin films than for the surface of a semi-infinite solid because there are th interference between two interfaces (substrate-film and film-vacuum) and heavy damping on the substrate. The use of an optical probe and electron scattering has allowed us to draw a more complete picture of the dynamic screening in thin films. The number, dispersion, damping and optical activity of the collective modes of the thin films have been measured as a function of K film thickness. New overlayer-induced excitations are observed : At qII=0, they correspond to the antisymmetric slab mode and the multipole surface plasmon. At finite qII=0, these modes undergo a transition towards the K multipole and monopole surface plasmons. With increasing coverage, the overlayer excitations turn into the collective modes of semi-infinite K. For a consistent interpretation of photoyield and electron energy loss spectra it is crucial to account for the non-analytic dispersion of the overlayer modes at small parallel wave vectors and for the finite angular resolution of the detector. The observed dispersions confirm predictions based on the time-dependent density functional approach.

  • PDF

A Practical Connection Admission Control Scheme in ATM Networks (ATM망에서 실용적 연결수락제어 기법)

  • Kang, Koo-Hong;Park, Sang-Jo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.181-187
    • /
    • 2002
  • Connection admission control(CAC), which decides whether or not to accept a new call request, is one of the most Important preventive congestion control techniques in asynchronous transfer mode(ATM) networks. To develop a practical CAC scheme, first we propose a "Modified Cell Loss Probability MP${\nu}"$, which is based on "Virtual Cell Loss Probability P${\nu}"$, taking into account mean burst duration of input traffic source and buffer size in ATM networks. MP${\nu}"$ computes more accurate cell loss probability than P${\nu}"$ without increasing computational complexity, since P${\nu}"$ is formulated simply form the maximum and the average cell rate of input traffic. P${\nu}"$ is overestimated as compared to the real cell loss probability when the mean burst duration is relatively small to the buffer capacity. Then, we Propose a CAC scheme, based on "Modified Virtual Bandwidth(MVB)" method, which may individualize the cell loss probabilities in heterogeneous traffic environments. For the proposed approach, we define the interference intensity to identify interferences between heterogeneous traffic sources and use it as well as MP${\nu}"$ to compute MVB. Our approach is well suitable for ATM networks since it provides high bandwidth utilization and guarantees simple and real time CAC computation for heterogeneous traffic environments.heterogeneous traffic environments.

Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS)

  • Shin, Min-Chul;Kwon, Young Sang;Kim, Jong-Hwan;Hwang, Kyunghwa;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.88-95
    • /
    • 2019
  • This study was conducted to establish the analytical method for the determination of cyanide in blood, urine, lung and skin tissues in rats. In order to detect or quantify the sodium cyanide in above biological matrixes, it was derivatized to Pentafluorobenzyl cyanide (PFB-CN) using pentafluorobenzyl bromide (PFB-Br) and then reaction substance was analyzed using gas chromatography mass spectrometer (GC/MS)-SIM (selected ion monitoring) mode. The analytical method for cyanide determination was validated with respect to parameters such as selectivity, system suitability, linearity, accuracy and precision. No interference peak was observed for the determination of cyanide in blank samples, zero samples and lower limit of quantification (LLOQ) samples. The lowest limit detection (LOD) for cyanide was $10{\mu}M$. The linear dynamic range was from 10 to $200{\mu}M$ for cyanide with correlation coefficients higher than 0.99. For quality control samples at four different concentrations including LLOQ that were analyzed in quintuplicate, on six separate occasions, the accuracy and precision range from -14.1 % to 14.5% and 2.7 % to 18.3 %, respectively. The GC/MS-based method of analysis established in this study could be applied to the toxicokinetic study of cyanide on biological matrix substrates such as blood, urine, lung and skin tissues.

EMI Prediction and Reduction of Zero-Crossing Noise in Totem-Pole Bridgeless PFC Converters

  • Zhang, Baihua;Lin, Qiang;Imaoka, Jun;Shoyama, Masahito;Tomioka, Satoshi;Takegami, Eiji
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.278-287
    • /
    • 2019
  • In this study, a zero-crossing spike current issue in a totem-pole bridgeless power factor correction (PFC) converter is comprehensively investigated for the first time. Spike current occurs when input voltage crosses zero, becomes a noise source, and causes severe common mode emission issues. A generation mechanism for electromagnetic interference (EMI) is presented to investigate the EMI problem caused by zero-crossing issue, and a noise spectrum due to this issue is predicted by a theoretical analysis based on the Fourier coefficient of an approximate spike current waveform. Furthermore, a noise reduction method is proposed and then improved to reduce the spike current. Experimental measurements are implemented on a GaN-based totem-pole bridgeless PFC converter, and the spike current can be effectively suppressed through the proposed method. Furthermore, the noise spectrums measured without and with the reduced zero-crossing spike current are compared. Experimental results validate the analysis of the noise spectrum caused by the zero-crossing spike current issue.