• Title/Summary/Keyword: Mode instabilities

Search Result 79, Processing Time 0.026 seconds

Loss Analysis by Impeller Blade Angle in the S-Curve Region of Low Specific Speed Pump Turbine

  • Ujjwal Shrestha;Young-Do Choi
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2024
  • A pump turbine is a technically matured option for energy production and storage systems. At the off-design operating range, the pump turbine succumbed to flow instabilities, which correlated with the pump turbine geometry. A low specific speed pump turbine was designed and modified according to the impeller blade angle. Reynolds-Average Navier-Stokes is carried out with a shear stress transport turbulence model to evaluate the detailed flow characteristics in the pump turbine. The impeller blade inlet angle (𝛽1) and outlet angle (𝛽2) are used to evaluate hydraulic loss in the pump turbine. When 𝛽1 changed from low to high value, the maximum efficiency is increased by 4.75% in turbine mode. The S-Curve inclination is reduced by 8% and 42% for changes in 𝛽1 and 𝛽2 from low to high values, respectively. At α = 21°, the shock loss coefficient (𝜁s) is reduced by 16% and 19% with increases of 𝛽1 and 𝛽2 from low to high values, respectively. When 𝛽1 and 𝛽2 values increased from low to high, the impeller friction coefficient (𝜁f) increased and decreased by 20% and 8%, respectively. Hence, the high 𝛽2 effectively reduced the loss coefficient and S-Curve inclination.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Modulation Instability in Dispersion and Gain Managed Fibers (이득과 분산을 조절한 광섬유의 변조 불안정성 분석)

  • Choi, Byung-Hoon;Kim, Sang-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.93-99
    • /
    • 2007
  • We investigated analytically and numerically the occurrence of modulation instability in fibers with periodic changes both in dispersion and gain. Previously, it has been known that the modulation instability is suppressed in dispersion managed solitons where dispersion is managed in such a way that the local dispersion alternates between the normal and the anomalous regimes. In this work, we enhanced the advantage of the dispersion management scheme by additionally introducing proper gain/loss profiles in fibers. The gain/loss profile is given by $\Gamma(z)=0.5/D(z)*(dD/dz)$, where D(z) represents the dispersion profile. The fundamental gain spectra of the modulation instability in the dispersion and gain managed fibers have been derived analytically and confirmed by numerical calculation. Our investigation reveals that in the dispersion and gain fibers the modulation instabilities are always much more suppressed compared to the case with only dispersion managed. In practical dispersion management schemes, dispersion profiles show discontinuity. and thus. the corresponding gain/loss profiles tend to be finite. In these cases, the gain/loss profiles were approximated by lumped gains/losses of finite values. Our numerical calculations confirm that this approximation also works well.

Effects of Injector Recess and Combustion Chamber Length on Combustion Stability of Swirl Coaxial Injectors (동축 와류형 분사기의 연소안정성에 대한 분사기 리세스 및 연소실 길이의 영향)

  • Bak, Sujin;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.24-33
    • /
    • 2020
  • In this study, model combustion tests were conducted to investigate the combustion instability characteristics of swirl coaxial injectors for a liquid rocket engine. To examine the effects of the combustion chamber resonant frequency and the injector mixing conditions, pressure fluctuations in the combustion chamber were measured by changing the combustion chamber length, injector recess length, and propellant mixture ratio. From the test results, the variation in the pressure fluctuations for each experimental condition was confirmed and the combustion stability was evaluated by stability mapping. It was found that the longitudinal mode and Kelvin-Helmholtz instabilities occurred due to the change in the combustion chamber and recess lengths.

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

Experimental Study on Combustion Instability in a Dump Combustor (덤프 연소기에서의 연소불안정에 대한 실험적 연구)

  • An, Gyu-Bok;Yun, Yeong-Bin;Yu, Kenneth
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2006
  • The combustion instability in a model dump combustor with an exhaust nozzle and the possibility of combustion control using a loudspeaker to these instabilities were studied. By changing inlet velocity, combustor length and equivalence ratio, dynamic pressure signals and flame structures were simultaneously taken. Because inlet velocity and combustor length affect the life time of vortex in the dump combustor, the results showed that as the combustor length increased and the inlet velocity decreased, the instability frequency decreased and the maximum power spectral density of the dynamic pressure generally decreased. Also, instability frequency and maximum power spectral density of the dynamic pressure increased with the increment of equivalence ratio. From the data of close-loop control, the optimum time-delay control using a loudspeaker was confirmed to be able to reduce the vortex shedding induced from the mixed acoustic-convective mode combustion instability.

Analysis of the Unstable Propeller Wake Using POD Method (POD(Proper Orthogonal Decomposition) 방법을 이용한 불안정한 프로펠러 후류 해석)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Kim, Ki-Sup;Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.20-29
    • /
    • 2010
  • The complicated flow characteristics of upper propeller wake influenced by hull wake are investigated in detail in the present study. A two-frame PIV (particle image velocimetry) technique was employed to visualize the upper propeller wake region. As the upper hull wake affects strongly propeller inflow, upper propeller wake shows much unstable vortical behavior, especially in the tip vortices. Velocity field measurements were conducted in a cavitation tunnel with a simulated hull wake. Generally, the hull wake generated by the hull of a marine ship may cause different loading distributions on the propeller blade in both upper and lower propeller planes. The unstable upper propeller wake caused by the ship's hull is expressed in terms of turbulent kinetic energy (TKE) and is identified by using the proper orthogonal decomposition (POD) method to characterize the coherent flow structure in it. Instabilities appeared in the eigen functions higher than the second one, giving unsteadiness to the downstream flow characteristics. The first eigen mode would be useful to find out the tip vortex positions immersed in the unstable downstream region.

Kinematics of filament stretching in dilute and concentrated polymer solutions

  • McKinley, Gareth H.;Brauner, Octavia;Yao, Minwu
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The development of filament stretching extensional rheometers over the past decade has enabled the systematic measurement of the transient extensional stress growth in dilute and semi-dilute polymer solutions. The strain-hardening in the extensional viscosity of dilute solutions overwhelms the perturbative effects of capillarity, inertia & gravity and the kinematics of the extensional deformation become increasingly homogeneous at large strains. This permits the development of a robust open-loop control algorithm for rapidly realizing a deformation with constant stretch history that is desired for extensional rheometry. For entangled fluids such as concentrated solutions and melts the situation is less well defined since the material functions are governed by the molecular weight between entanglements, and the fluids therefore show much less pronounced strain-hardening in transient elongation. We use experiments with semi-dilute/entangled and concentrated/entangled monodisperse polystyrene solutions coupled with time-dependent numerical computations using nonlinear viscoelastic constitutive equations such as the Giesekus model in order to show that an open-loop control strategy is still viable for such fluids. Multiple iterations using a successive substitution may be necessary, however, in order to obtain the true transient extensional viscosity material function. At large strains and high extension rates the extension of fluid filaments in both dilute and concentrated polymer solutions is limited by the onset of purely elastic instabilities which result in necking or peeling of the elongating column. The mode of instability is demonstrated to be a sensitive function of the magnitude of the strain-hardening in the fluid sample. In entangled solutions of linear polymers the observed transition from necking instability to peeling instability observed at high strain rates (of order of the reciprocal of the Rouse time for the fluid) is directly connected to the cross-over from a reptative mechanism of tube orientation to one of chain extension.

  • PDF

Experimental Study on Combustion Instability Characteristics of Model Gas Turbine Combustor at Various H2/CH4/CO Composition (H2/CH4/CO 연료조성 변화에 따른 모형 가스터빈 연소기 불안정 특성에 대한 실험적 연구)

  • Yoon, Jisu;Lee, Min-Chul;Joo, Seongpil;Kim, Jeongjin;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.67-74
    • /
    • 2013
  • IGCC(Integrated Gasification Combined Cycle) system is candidates which can solve the environmental problems including global warming, since it can be easily combined with CCS(Carbon Capture System). In this research, combustion instability characteristics were studied at various fuel which are composed of $H_2/CH_4/CO$ mixture. Mode analysis for instabilities observed experimentally was conducted and the linearly increasing tendency of frequency was observed as the hydrogen content in fuel increases.