• 제목/요약/키워드: Mode Superposition Method

검색결과 125건 처리시간 0.024초

모드중첩법을 기초로 한 집전성능해석 프로그램 개발 (Development of a Dynamic Simulation Program for Pantograph-Catenary System based on a Mode Superposition Method)

  • 조용현;이기원;현승호;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.606-617
    • /
    • 2000
  • A dynamic simulation program for pantograph-catenary system is developed based on a mode superposition method to predict current collection performance. Formulations for the dynamic simulation are presented in this paper. The number of modes which should be considered for a KTX catenary system is reviewed through frequency response analyses. The responses for GPU pantograph - KTX catenary system are simulated with various train speeds. The our simulation results are in reasonably good agreements with RTRI simulation program, SNCF simulation program, and BR simulation program.

  • PDF

Residual Vector를 이용한 시간이력해석의 잔여모드 응답 고려 방법 (Consideration of residual mode response in time history analysis using residual vector)

  • 변창호;이한걸;김정용
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.137-144
    • /
    • 2021
  • The mode superposition time history analysis method is commonly used in a seismic analysis. The maximum response in the time history analysis can be derived by combining the responses of individual modes. The residual mode response is the response of the modes which are not considered in the time history analysis. In this paper, the residual vector method to consider the residual mode response in the time history analysis is introduced and evaluated. Seismic analyses for a sample structure model and a reactor vessel model are performed to evaluate the residual vector method. The analysis results show that residual mode response is well calculated when the residual vector method is used. It is confirmed that the residual vector method is useful and acceptable to consider the residual mode response in a seismic analysis of the nuclear power plant equipment.

전단류 하중을 받는 상부장력 라이저의 동적 응답 해석 (Dynamic Response Analysis of Top-tensioned Riser Under Sheared Current Load)

  • 김국현
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2013
  • A numerical scheme based on a mode superposition method is presented for the dynamic response analysis of a top-tensioned riser (TTR) under sheared current loads. The natural frequencies and mode shapes of the TTR have been calculated analytically for a beam with a slowly varying tension and pinned-pinned boundary conditions at the top and bottom ends. The lift coefficients and corresponding amplitudes used to estimate the vortex-induced modal force and damping for each mode were predicted via iterative calculations based on the input and output power balancing concept. Here, the power-in regions were controlled by the normal distribution function, for which the center was coincident with the lock -in location by local vortex-shedding, and the range was defined by the constant standard deviation for the reduced velocity by the local current speed. Finally, dynamic responses such as root-mean-squared displacement and stress were calculated using the mode superposition technique. In order to verify the presented scheme, a numerical calculation was performed for a TTR under an arbitrary linearly sheared current and linearly varying tension. A comparison with the results of the existing software showed that the presented scheme could give reliable and feasible solutions. Case studies were performed to investigate the effects of various current loads and tensions.

모드중첩기법을 이용한 CASK의 동적충격응답해석 (A Study on the Dynamic Impact Response Analysis of Cask by Modal Superposition Method)

  • 이영신;김용재;최영진;김월태
    • 한국전산구조공학회논문집
    • /
    • 제18권4호통권70호
    • /
    • pp.373-383
    • /
    • 2005
  • 다양한 분야에서 방사선물질을 수송하기 위해 사용되고 있는 수송용기(cask)는 국내 원자력안전규정 및 IAEA 운반규정에서 정한 9m 자유낙하충격의 가상사고조건을 만족시켜야 된다. 현재까지 수송용기의 낙하충격력은 주로 복잡한 계산과정을 갖는 유한요소해석에 의해 수행되어 왔다. 본 논문에서는 수송용기 본체의 동적충격응답에 대해 모드중첩기법을 이용하여 해석하고 그 해법방법을 제시하였다. 해석결과는 이전에 실시되었던 시험결과와 유한요소해석과 비교를 통하여 그 타당성을 입증하였다. 본 해석방법은 유한요소 해석과 비교하여 간단한 방법으로서 수송용기에 대한 대체적인 동적응답을 예측할 수 있다.

충격에 강인한 폴리곤 미러 스캐너 모터의 판 스프링 설계 (Robust Design of Leaf Spring of a Polygon Mirror Scanner Motor Against Shock)

  • 이상욱;김명규;정경문;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.515-520
    • /
    • 2008
  • This paper develops a mite element model of a polygon mirror scanner motor supported by the sintered bearing and flexible supporting structures to analyze the shock response by using the finite element method and the mode superposition method. The validity of the proposed model is verified by comparing the simulated natural frequencies and shock response with the experimental ones. It investigates the displacement and the stress of the most vulnerable component, i.e. a leaf spring due to shock, and it proposes a robust design of leaf spring of a polygon mirror scanner motor against shock.

  • PDF

4절 링크기구의 유연성 해석 (Flexibility Analysis of 4-Bar Linkage Mechanism)

  • 조선휘;박종근;한성현
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1365-1373
    • /
    • 1994
  • Elasto-dynamic deformation of flexible linkage mechanism was analyzed using the finite element method. A computer program was constructed and applied to analyze a specific crank-level 4-bar mechanism, in which the elasto-dynamic deformation of the mechanism system was obtained using mode superposition method in the case of constant input speed and the effect of geometric stiffness on the mechanism is included. Experimental verification of numerical results was conducted by measuring the elasto-dynamic deformation of mid-points of coupler and lever for the 4-bar lingkage mechanism using high speed camera and image data processing systeem. For the elasto-dynamic deformation at the lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones. However, the numerical results excluding geometric stiffness good agree with the experimental ones at the couper mid-point.

Comparison of model order reductions using Krylov and modal vectors for transient analysis under seismic loading

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.643-651
    • /
    • 2020
  • Generally, it is necessary to perform transient structural analysis in order to verify and improve the seismic performance of high-rise buildings and bridges against earthquake loads. In this paper, we propose the model order reduction (MOR) method using the Krylov vectors to perform seismic analysis for linear and elastic systems in an efficient way. We then compared the proposed method with the mode superposition method (MSM) by using the limited numbers of modal vectors (or eigenvectors) calculated from the modal analysis. In the calculation, the data of the El Centro earthquake in 1940 were adopted for the seismic loading in the transient analysis. The numerical accuracy and efficiency of the two methods were compared in detail in the case of a simplified high-rise building.

모우드 가속도법의 수학적 정리(定理) (Mathematical Theorem of Mode Acceleration Method)

  • 김태남
    • 한국지진공학회논문집
    • /
    • 제7권2호
    • /
    • pp.1-7
    • /
    • 2003
  • 모우드 중첩법은 구조 동역학 문제의 선형 거동해를 위해서 가장 일반적으로 사용되고 있다. 이러한 모우드 중첩법의 큰 장점은 보통 저차 모우드의 작은 수 만으로 구조물의 거동해석이 충분하다는 것이다. 그러나 많은 수의 자유도를 갖는 거대 구조물에서는 수렴속도가 느리고, 정확한 모우드 중첩법이 되기 위해서는 많은 수의 모우드 수가 필요하게 된다. 모우드 중첩법의 부정확성은 사용되는 모우드 수의 절삭에 의해서 발생된다. 이러한 단점들은 모우드 가속도법에 의해서 극복될 수 있다. 조화하중을 받는 단순보에 대하여 예제해석을 수행하였으며, 두 방법에 의해서 절점 변위들의 수렴성을 비교하였다. 비교적 낮은 주파수를 갖는 하중에 대하여 모우드 가속도법은 저차 모우드 1개만으로도 좋은 결과를 얻을 수 있었으며, 이 방법은 수치해석에 있어서 더 경제적이며 또한 정확한 해가 된다.

Extension of Direct Displacement-Based Design to Include Higher-Mode Effects in Planar Reinforced Concrete Frame Buildings

  • 아베베 베카 하일루;이종세
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.299-309
    • /
    • 2018
  • Now that problems with force-based seismic design have been clearly identified, design is inclined toward displacement-based methods. One such widely used method is Direct-Displacement-Based Design (DDBD). Yet, one of the shortcomings of DDBD is considering higher-mode amplification of story shear, moments, and displacements using equations obtained from limited parametric studies of regular planar frames. In this paper, a different approach to account for higher-mode effects is proposed. This approach determines the lateral secant stiffness of the building frames that fulfill the allowable inter-story drift without exceeding the desired story displacements. Using the stiffness, an elastic response spectrum analysis is carried out to determine elastic higher-mode force effects. These force effects are then combined with DDBD-obtained first-mode force effects using the appropriate modal superposition method so that design can be performed. The proposed design procedure is verified using Nonlinear Time History Analysis (NTHA) of twelve planar frames in four categories accounting for mass and stiffness irregularity along the height. In general, the NTHA response outputs compared well with the allowable limits of the performance objective. Thus, it fulfills the aim of minimizing the use of NTHA for planar frame buildings, thereby saving computational resources and effort.

기준진동형중첩법(基準振動型重疊法)에 의한 Timoshenko보 유추(類推) 구조체(構造體)의 강제횡진동해석(强制橫振動解析) (An Investigation into the Mode Superposition Method for the Foreced Transverse Vibration Analysis of Structures subject to the Timoshenko Beam Analogy)

  • 김극천;박영일;김형만;김영중
    • 대한조선학회지
    • /
    • 제20권1호
    • /
    • pp.21-27
    • /
    • 1983
  • The mode superposition method(MSM) for the forced transverse vibration analysis of structures subject to Timoshenko beam analogy, which had originally been developed by Ormondroyd and McGoldrick, is reviewed to formulate it in more general form taking account of rotary inertia, dampings in separate terms of internal and external ones, and simultaneous action of exciting forces and moments. To investigate some general features of the method in practical utilizations, resonant maximum amplitudes of 4 high speed ships under concentrated sinusoidal excitation at the stern are calculated by both MSM and the finite difference method(FDM). For the FDM the hulls are discretized into 40 equal segments, and in utilization of MSM contributions of the first six modes are summed up to obtain responses up to the six-nodes resonant mode. The numerical results show that MSM gives slightly higher values, $4{\sim}10%$, than those by FDM. Since there is always uncertainty in the damping estimation of actual systems, influences of the damping magnitude on resonant amplitudes and a practical method to estimate modal damping coefficients are discussed.

  • PDF