• 제목/요약/키워드: Mode Shape Variation

검색결과 83건 처리시간 0.024초

Extensional 진동 모드를 이용한 압전 트랜스포머의 감압 특성 (Step-Down Voltage Properties of Piezoelectric Transformer with Extensional Vibration Mode)

  • 최지현;방규석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.652-655
    • /
    • 2003
  • In this paper, step-down piezoelectric transformer is studied. The piezoelectric transformer, made of lead zirconate titanate solid solution ceramic, is operated by a fundamental contour-extensional vibration mode. The transformer of 14mm length, 14mm width and 4.5mm thickness was made up two shape(Type I and II). The resonant frequency (fr) is 144kHz and 128kHz at the load resistant of $7.5{\Omega}$ that is a similar to calculating matching impedance. The gain (G) obtained 0.19 and 0.08 at each resonant frequency, when applied input voltage is 25V. The temperature difference with the variation of load resistant was increased with increasing load resistant and was the lowest at $7.5{\Omega}$ near the matching of output impedance.

  • PDF

Experimental investigation on the buckling of thin cylindrical shells with two-stepwise variable thickness under external pressure

  • Aghajari, Sirous;Showkati, Hossein;Abedi, Karim
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.849-860
    • /
    • 2011
  • The buckling capacity of the cylindrical shells depends on two geometric ratios of L/R and R/t. However the effect of thickness variation on the behavior of the shells is more complicated and the buckling strength of them is sensitive to the magnitude and shape of geometric imperfections. In this paper the effects of thickness variation and geometric imperfections on the buckling and postbuckling behavior of cylindrical shells are experimentally investigated. The obtained results are presented under the effect of uniform lateral pressure. It is found in this investigation that the buckling mode can be generated in the whole length of the shell, if the thickness variation is low.

자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구 (Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile)

  • 허영민;박동환;강성수
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

Investigations on seismic response of two span cable-stayed bridges

  • Bhagwat, Madhav;Sasmal, Saptarshi;Novak, B.;Upadhyay, A.
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.337-356
    • /
    • 2011
  • In this paper, cable-stayed bridges with single pylon and two equal side spans, with variations in geometry and span ranging from 120 m to 240 m have been studied. 3D models of the bridges considered in this study have been analysed using ANSYS. As the first step towards a detailed seismic analysis, free vibration response of different geometries is studied for their mode shapes and frequencies. Typical pattern of free vibration responses in different frequencies with change in geometry is observed. Further, three different seismic loading histories are chosen with various characteristics to find the structural response of different geometries under seismic loading. Effect of variation in pylon shape, cable arrangement with variation in span is found to have typical characteristics with different structural response under seismic loading. From the study, it is observed that the structural response is very much dependent on the geometry of the cable-stayed bridge and the characteristics of the seismic loading as well. Further, structural responses obtained from the study would help the design engineers to take decisions on geometric shapes of the bridges to be constructed in seismic prone zones.

면진구조물 내 층응답스펙트럼 작성을 위한 고려사항 (Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures)

  • 이승재;김정한
    • 한국지진공학회논문집
    • /
    • 제26권2호
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

Laser Holography 기법에 의한 균열 박판의 결함 진전에 따른 진동 특성에 관한 연구 (A Study on Vibration Characteristic of Thin Plate in Crack Propagation by Laser Holography Method)

  • 김인권;김경석;윤성운;강기수
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.200-205
    • /
    • 2000
  • This paper presents the vibration characteristics of a rectangular plate with 45$^{\circ}$oblique crack and a smooth plate subjected to a uniaxial tension. The experiment is adopted by the time-average holography method. The natural frequency and mode shape are considered accurate according to the increasement of tensile load in the study. When tensile load is zero, the vibration modes are almost agreed with the smooth and the 45$^{\circ}$obliquely cracked plate. But since then, according to the increasement of load, it is shown that vibration modes are extremely varied. The effects of the crack length in the vibration characteristic are discussed in detail. It is indicated that the increase of the crack length makes the variation of the frequencies and modes complicate in the range of even a small load.

  • PDF

Determination of optimal accelerometer locations using modal sensitivity for identifying a structure

  • Kwon, Soon-Jung;Woo, Sungkwon;Shin, Soobong
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.629-640
    • /
    • 2008
  • A new algorithm is proposed to determine optimal accelerometer locations (OAL) when a structure is identified by frequency domain system identification (SI) method. As a result, a guideline is presented for selecting OAL which can reflect modal response of a structure properly. The guideline is to provide a minimum number of necessary accelerometers with the variation in the number of measurable target modes. To determine OAL for SI applications effectively, the modal sensitivity effective independence distribution vector (MS-EIDV) is developed with the likelihood function of measurements. By maximizing the likelihood of the occurrence of the measurements relative to the predictions, Fisher Information Matrix (FIM) is derived as a function of mode shape sensitivity. This paper also proposes a statistical approach in determining the structural parameters with a presumed parameter error which reflects the epistemic paradox between the determination of OAL and the application of a SI scheme. Numerical simulations have been carried out to examine the proposed OAL algorithm. A two-span multi-girder bridge and a two-span truss bridge were used for the simulation studies. To overcome a rank deficiency frequently occurred in inverting a FIM, the singular value decomposition scheme has been applied.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel

  • Bhagata, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.543-567
    • /
    • 2016
  • This study attempts to address the buckling and free vibration characteristics of an isotropic cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element analysis has been used in the present study. The approach involves three parts, in the first part non-uniform temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis are carried out to compute critical buckling temperature as well as natural frequencies and associated mode shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane boundary constraints are considered. The relation between buckling temperature under uniform and non-uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature variation field influences the fundamental buckling mode shape significantly. Further, it is observed that natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the intensity of the heat source is high and structural stiffness is low.

원주방향 노치형 감육부를 가진 배관의 손상거동 평가 (Evaluation of Failure Behavior of a Pipe Containing Circumferential Notch-Type Wall Thinning)

  • 김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1295-1302
    • /
    • 2003
  • In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, Schedule 80 pipe specimen simulated notch- and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results. of experiment the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe.