• Title/Summary/Keyword: Mode Model

Search Result 4,875, Processing Time 0.031 seconds

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

The Characteristics of Mode Choice Model by Stated Preference Data (선호의식데이타에 의한 교통수단선택 모델의 특성)

  • 이진우
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.4
    • /
    • pp.31-45
    • /
    • 1995
  • In recent year, especially in the mode choice analysis, it has been perceived that the importance of individual performance data using stated preference(SP) experiments as well as revealed preference data . Since SP experiments present respondent with various hypothetical alternatives, which are produced by a combination of a number of different attribute levels, and ask them to indicate a preference, it is possible to analyze travel behavior under a situation of potential environment change such as proposed alternative mode of transportation. The basic problems, however, remains that SP are not consistent with the actual travel behaviors and the research reports for stability of mode choice model using SP data has not been sufficient. Under this background, this study is to examine the characteristics of mode choice model using the SP data by the following items. $\circled1$ Analysis of factors affecting the mode choice behavior by the variance analysis of orthogonal-arrays-table $\circled2$ The reliability of SP data by transfer intention data $\circled3$ The stability of SP responses obtained from repetitive question by the comparison of model coefficient specified by each repetitive data. $\circled4$ The stability of ranking data in mode choice model For the analysis, we assumed subway operations in the Gwang-Ju , and set up a choice-set of hypothetical options based on Experimental Design Method.

  • PDF

A Combined Model of Trip Distribution, Mode Choice and Traffic Assignment (교통분포, 수단선택 및 교통할당의 결합모형)

  • Park, Tae-Hyung
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.474-482
    • /
    • 2002
  • In this paper, we propose a parametric optimization approach to simultaneously determining trip distribution, mode choice, and user-equilibrium assignment. In our model, mode choice decisions are based on a binomial logit model and passenger and cargo demands are divided into appropriate mode according to the user equilibrium minimum travel time. Underlying network consists of road and rail networks combined and mode choice available is auto, bus, truck, passenger rail, and cargo rail. We provide an equivalent convex optimization problem formulation and efficient algorithm for solving this problem. The proposed algorithm was applied to a large scale network examples derived from the National Intermodal Transportation Plan (2000-2019).

Beat Control Using an Equivalent Ring Model (등가 종 모델을 이용한 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Joonghyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.516-519
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

  • PDF

Sampler Model of P-type Current Mode Control Utilizing Low Pass Filter (저역 통과 필터를 사용하는 P-type 전류모드제어의 샘플러 모델)

  • Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.388-392
    • /
    • 2012
  • In this paper, a sampler model for the P-type current mode control employing low pass filter is proposed. Even though the frequency response of the compensator used in a P-type current mode control employing low pass filter is similar to that of P-type compensator, the sampler model has to be obtained from the method used in PI-type current mode control. In order to show the usefulness of the proposed method, prediction results of the proposed model are compared to those from the circuit level simulator, PSIM.

Effects of chassis flexibility and engine vibration in ride quality (차체의 턴성효과와 엔진의 진동이 승차감에 미치는 영향분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.205-213
    • /
    • 1997
  • In this study, dynamic analysis of a passenger car is carried out to analyze ride quality over a random road profile. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi- link type. The following five different models are constructed and compared to see the effects of engine vibration and chassis flexibility in the ride quality. (1) one rigid chassis model, (2) a rigid chassis and rigid engine model, (3) a rigid engine and flexible chassis model with one vibration mode, (4) one flexible chassis model with six engine vibration modes and one chassis vibration mode, (5) one flexible chassis model with seven vibration modes and four static correction modes. The result shows that engine vibration modes and the first bending mode of the chassis are important in the ride quality.

  • PDF

A Performance Comparison of the Partial Linearization Algorithm for the Multi-Mode Variable Demand Traffic Assignment Problem (다수단 가변수요 통행배정문제를 위한 부분선형화 알고리즘의 성능비교)

  • Park, Taehyung;Lee, Sangkeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.253-259
    • /
    • 2013
  • Investment scenarios in the transportation network design problem usually contain installation or expansion of multi-mode transportation links. When one applies the mode choice analysis and traffic assignment sequentially for each investment scenario, it is possible that the travel impedance used in the mode choice analysis is different from the user equilibrium cost of the traffic assignment step. Therefore, to estimate the travel impedance and mode choice accurately, one needs to develop a combined model for the mode choice and traffic assignment. In this paper, we derive the inverse demand and the excess demand functions for the multi-mode multinomial logit mode choice function and develop a combined model for the multi-mode variable demand traffic assignment problem. Using data from the regional O/D and network data provided by the KTDB, we compared the performance of the partial linearization algorithm with the Frank-Wolfe algorithm applied to the excess demand model and with the sequential heuristic procedures.

Performance Analysis of a Sleep Mode Operation in the IEEE 802.16e Wireless MAN with M/G/1 Multiple Vacations Model (M/G/1 복수 휴가 모델을 이용한 IEEE 802.16e 무선 MAN 수면모드 작동에 대한 성능분석)

  • Jung, Sung-Hwan;Hong, Jung-Wan;Chang, Woo-Jin;Lie, Chang-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.89-99
    • /
    • 2007
  • In this paper, an analytic model of a sleep mode operation in the IEEE 802.16e is investigated. A mobile subscriber station(MSS) goes to sleep mode after negotiations with the base station(BS) and wakes up periodically for a short interval to check whether there is downlink traffic to it. If the arrival of traffic is notified, an MSS returns to wake mode. Otherwise, it again enters increased sleep interval which is double as the previous one. In order to consider the situation more practically, we propose the sleep mode starting threshold, during which MSS should await packets before it enters the sleep mode. By modifying the M/G/l with multiple vacations model, energy consumption ratio(ECR) and average packet response time are calculated. Our analytic model provides potential guidance in determining the optimal parameters values such as sleep mode starting threshold, minimal sleep and maximal sleep window.

Multi-Mode Radar System Model Design for Helicopter (헬기탑재 다중모드 레이다 시스템 모델 설계)

  • Kwag, Young-Kil;Bae, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-212
    • /
    • 2003
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the conceptual design results of the multi-mode pulsed Doppler radar system testbed model for helicopter. Due to the inherent flight nature of the hovering vehicle which is flying in low-altitude and low speed, as well as rapid maneuvering, the moving clutters from the platform should be suppressed by using a special MTD (Moving Target Detector) processing. For the multi-mode radar system model design, the flight parameters of the moving helicopter platform were assumed: altitude of 3 Km, average cruising velocity of 150knots. The multi-mode operation capability was applied such as short-range, medium-range, and long-range depending on the mission of the vehicle. The nominal detection ranges is 30 Km for the testbed experimental model, but can be expanded up to 75 Km for the long range weather mode. The detection probability of each mode is also compared in terms of the signal-to noise ratio of each mode, and the designed radar system specifications ate provided as a design results.

  • PDF

Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems Using Fuzzy Models

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1262-1266
    • /
    • 2003
  • Fuzzy sliding mode controller for a class of uncertain nonlinear dynamical systems is proposed and analyzed. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

  • PDF