• 제목/요약/키워드: Modal parameters identification

검색결과 208건 처리시간 0.025초

SMIT를 활용한 지진하중을 받는 전단 구조물의 응답모드 특성에 관한 연구 (Application Studies on Structural Modal Identification Toolsuite for Seismic Response of Shear Frame Structure)

  • 장민우
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.201-210
    • /
    • 2018
  • The improvement in computing systems and sensor technologies devotes to conduct data-driven structural health monitoring algorithms for existing civil infrastructures. Despite of the development of techniques, the uncertainty oriented from the measurement results in the discrepancy to the actual structural parameters and let engineers or decision makers hesitate to adopt such techniques. Many studies have shown that the modal identification results can be affected by the uncertainties due to the applied methods and the types of loading. This paper aims to compare the performance of modal identification methods using Structural Modal Identification Toolsuite (SMIT) which has been developed to facilitate multiple identification methods with a user-friendly designed platform. The data fed into SMIT processes three stages for the comprehensive identification including preprocessing, eigenvalue estimation, and post-processing. The seismic and white noise response for shear frame model was obtained from numerical simulation. The identified modal parameters is compared to the actual modal parameters. In order to improve the quality of coherence in identified modal parameters, several hurdles including modal phase collinearity and extended modal amplitude coherence were introduced. Numerical simulation conducted on the 5 dof shear frame model were used to validate the effectiveness of using these parameters.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

개선된 시간영역 해석기법에 의한 동특성 추정 (Determination of Vibration Parameters Using The Improved Time Domain Modal Identification Algorithm)

  • 정범석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.147-154
    • /
    • 1999
  • A new approach to conducting the vibration parameters identification algorithm is proposed. The approach employs the concept of modal amplitude ratio implemented in a mode shape estimation. The accuracy of the improved Ibrahim Time Domain identification algorithm in extracting structural modal parameters from free response functions has been studied using computer simulated data for 9 stations on the two-span continuous beam. Simulated responses from the lumped and distributed parameter system demonstrate that this algorithm produces excellent results, even in the 300% noise response.

  • PDF

Bridge modal identification based on frequency variation caused by a parked vehicle

  • He, Wen-Yu;Ren, Wei-Xin;Wang, Quan;Wang, Zuo-Cai
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.413-421
    • /
    • 2022
  • Modal parameters are the main dynamic characteristics of bridge. This study aims to propose an innovative route to estimate the modal parameters for bridges by using a parked vehicle in which mode shapes with high accuracy and spatial resolution are identified by frequency measurement. Based on the theory of dynamic modification and modal identification, the mathematical formulation between the parked mass induced frequency variation and the modal parameters of a bridge is derived. Then this mathematical formulation is extended to a parked vehicle-bridge system. The arithmetic and processes for estimating the modal parameters based on the identified frequency variation of the vehicle-bridge systems when the vehicle locates at sequentially arranged positions are presented. Finally the proposed method is applied to several simulated bridges of different types. The results indicate that it can estimate the modal parameters with high accuracy and efficiency.

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

Output only structural modal identification using matrix pencil method

  • Nagarajaiah, Satish;Chen, Bilei
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.395-406
    • /
    • 2016
  • Modal parameter identification has received much attention recently for their usefulness in earthquake engineering, damage detection and structural health monitoring. The identification method based on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross-correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The numerical simulation results show that this technique can identify modal parameters accurately even if the noise level is high.

Modal identification of time-varying vehicle-bridge system using a single sensor

  • Li, Yilin;He, Wen-Yu;Ren, Wei-Xin;Chen, Zhiwei;Li, Junfei
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.107-119
    • /
    • 2022
  • Modal parameters are widely used in bridge damage detection, finite element model (FEM) updating and design optimization. However, the conventional modal identification approaches require large number of sensors, enormous data processing workload, but normally result in mode shapes with low accuracy. This paper proposes a modal identification method of time-varying vehicle-bridge system using a single sensor. Firstly, the essential physical relationship between the instantaneous frequency of the vehicle-bridge system and the bridge mode shapes are derived. Subsequently, based on the synchroextracting transform, the instantaneous frequency of the system is tracked through the dynamic response collected by a single sensor, and further the modal parameters are estimated by using the derived physical relationship. Then numerical and experimental examples are conducted to examine the feasibility and effectiveness of the proposed method. Finally, the modal parameters identified by the proposed method are applied in bridge FEM updating. The results manifest that the proposed method identifies the modal parameters with high accuracy via a single sensor, and can provide reliable data for the FEM updating.

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

Modal parameters identification of heavy-haul railway RC bridges - experience acquired

  • Sampaio, Regina;Chan, Tommy H.T.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.1-18
    • /
    • 2015
  • Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Caraj$\acute{a}$s railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.