• Title/Summary/Keyword: Modal index

Search Result 163, Processing Time 0.021 seconds

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.

Urban Accessibility Index for Evaluation of Sustainability in Urban Transport System (도시 교통체계의 지속가능성 평가를 위한 도시 접근성 지표)

  • Shin, Seong-Il;Jang, Yun-Mee;Kim, Soon-Gwan;Kim, Chan-Sung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.31-42
    • /
    • 2005
  • Accessibility is the generalized definition on how ease of access. Accessibility is used to appraise transportation project such as capturing the quality of the existing state of the transportation system at diverse spatial levels, It also reflects on the effect of improvements to the existing travel modes and the intoduction of new modes. The overall goal of this study is to propose a measure of urban accessibility in Seoul which can analyze various behavior of travelers in the city and to present applications. In this study, we apply measures of accessibility which are developed by CTR(The Center for Transportation Research, the University of Texas at Austin) to construct the urban accessibility index applicable for explaining trip behavior in Seoul. We evaluate sustainability of urban transport system in Seoul in 2002 by using the MAG(Modal Accessibility GaP) index which is developed to measure the accessibility gap between the more energy-efficient mode and less energy-efficient mode of transport. By analyzing the change of MAG index between 2002 and 2004 based on network data, we show how the public transportation system reform affect the sustainability in transport system.

Modal Characteristics of Photonic Crystal Fibers

  • Lee, Yong-Jae;Song, Dae-Sung;Kim, Se-Heon;Huh, Jun;Lee, Yong-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.188-192
    • /
    • 2003
  • The modal characteristics of the photonic crystal fibers are analyzed using the reliable and efficient plane wave expansion method. The mode profile, effective index and group velocity dispersion are obtained by solving Maxwell's vector wave equations without any approximation. The zero dispersion condition of a photonic crystal fiber is derived over a wide range of wavelengths. Higher-order modes are also easily found as a by-product of the plane wave expansion method. This method can be used to quickly and accurately design various optical properties of photonic crystal fibers.

DYNAMIC CHARACTERISTICS OF SPINNING DISK VIBRATION INFLUENCED BY CENTRIFUGAL AIRFLOW (광자기 기록 장치에서의 디스크 진동과 회전 공기 유동 특성에 관한 연구)

  • 김수경;송인상;손희기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.206-210
    • /
    • 1998
  • A study on dynamic characteristics of rotating disks in magneto optical disk drives is presented. Natural frequencies of rotating disks are investigated experimentally and numerically. The frequency response and critical speeds of the ASMO disk are discussed. The characteristics of airflow around the disk and their effects on disk vibrations are also investigated. It is found that the numerical calculation of the natural frequencies of rotating disks agrees well with the experimental results. The airflow around the disk in the cartridge affects the characteristics of the disk vibrations to reduce the modal frequencies of the disk. The experiment shows that negative vertical offsets of the disk in the cartridge possibly increase the vibration amplitudes. As being influenced by the geometry of the cartridge, the rotation of the disk causes an asymmetric airflow in the presence of window.

  • PDF

Piezoelectric Sensitivity Analysis for Vibration Control of a Plate (평판의 진동제어를 위한 압전감도 해석)

  • Hwang, Jin-Kwon;Song, Chul-Ki;Choi, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2000
  • This paper investigates optimal locations of piezoelectric actuators and sensors on a thin plate. To locate actuators and sensors properly is important in controlling modal vibrations well. A piezoelectric sensitivity index is introduced to select optimal locations for vibration control of each mode. The sensitivity expresses the efficiency of actuating and sensing modal forces according to locations of a piezoelectric material on a plate. The piezoelectric sensitivities for two types of plate, an all-clamped plate, and a free-free plate, are derived theoretically and are verified experimentally. Also, its usefulness Is experimentally shown to control vibration of the all-clamped plate with piezoelectric materials.

  • PDF

Array Mode Characteristics of Channeled-Substrate-Planar Phase Laser Arrays (CSP 레이저 어레이의 결합모드 특성)

  • ;吳煥述
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.936-943
    • /
    • 1986
  • The lasing wavelengths and gain characteristics of the array modes of channel-substrate planar(CSP) lasers are presented. The gain values of array modes are determined from the complex coupling coefficients calculated using the fields of neighborig elements of the array. The computations show that for index guided lasers which have fields that are almost real valued, or have only slight phase curvature, the highest order array mode will have preferred oscillation. The inphase or fundamental mode, which produces only one major lobe in the far-field radiation pattern, will have the lowest modal gain of all array modes. Some of the devices discussed have modal gain differences of less than 10 cm**-1 between the highest and fundamental modes. For optical field confinement factors of about 20%, this gain difference corresponds to avtive layer gains of approximately 50**-1.

  • PDF

Damage Detection of Cantiler-type Structure by using Modal Parameters (동특성을 이용한 켄틸레버형 구조물의 손상추정)

  • 천영수;김흥식;김하근;강경완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.494-497
    • /
    • 2001
  • Identification of damage of structures has recently received considerable attention in the light of maintenance and safety assessment. In this respect, the vibration characteristics of buildings have been applied steadily to obtain a damage index of the whole building, but it cannot be established as a practical method until now. A practical method for the estimation of structural damage using the first natural frequency and mode shape of building is proposed in this paper. The effectiveness of the proposed method is verified by numerical and experimental tests. From the results, it is observed that severity and location of damage can be estimated with a relatively small error by using modal properties of building.

  • PDF

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.

Investigation of Resonant Wavelength Separation in Microband-induced Fiber Gratings

  • Sohn Kyung-Rak;Shim Joon-Hwan;Kim Kwang-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.63-66
    • /
    • 2006
  • In microband-induced fiber gratings, polarization properties and birefringence are investigated as a function of an applied line force. With the transmission curves associated with the maximum and minimum resonant wavelengths, the polarization-dependent behaviors are analyzed. By increasing the transverse line force, the resonance wavelength for an incident light polarized to the same direction of the force is blue-shifted as much as 0.69 nm/(N/cm) while that for the other polarization is insensitive. Using the resonant wavelength separation corresponding to the force variation, the transverse effective index change or modal birefringence variation is obtained. The ratio of modal birefringence versus applied line force is ${\Delta}B/{\Delta}f_x={\sim}8.38{\times}10^{-7}$.

Damage identification of isolators in base-isolated torsionally coupled buildings

  • Wang, Jer-Fu;Huang, Ming-Chih;Lin, Chi-Chang;Lin, Tzu-Kang
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.387-410
    • /
    • 2013
  • This paper deals with the damage assessment for isolators of base-isolated building systems considering the torsion-coupling (TC) effect by establishing damage indices. The damage indices can indicate the reduction in lateral stiffness of the isolator story as explicit formulas in terms of modal parameters. In addition, the damage location, expressed in terms of the estimated damage index and eccentricities before and after damage, is also presented. Numerical analysis shows that the proposed algorithms are applicable for general base-isolated multi-story TC buildings. A procedure from the analysis of seismic response to the implementation of damage indices is demonstrated by using a numerical case. A system identification technique is employed to extract modal parameters from seismic responses of a building. Results show that the proposed indices are capable of detecting the occurrence of damage and preliminarily estimating the location of damaged isolator.