• 제목/요약/키워드: Modal dynamic analysis

검색결과 928건 처리시간 0.025초

압전 액츄에이터를 이용한 Milli-Gripper의 동적 특성에 관한 연구 (A Study on Dynamic Characteristics of Milli-Gripper using Piezoelectric Actuator)

  • 이혜진;황재혁;이낙규;배재성;곽동기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.439-443
    • /
    • 2006
  • In this paper, a design of milli-gripper using piezoelectric actuator and flexible hinge structure has been suggested, and the dynamic characteristics of the milli-gripper has been analysed and improved. The milli-gripper consists of the operating and amplifier parts, and the perfomance of the gripper be heavily influenced by base excitation disturbances. The dynamic characteristics of milli-gripper has been measured by the FRF based on experimental modal analysis. It has been found by a series of experiments that the performance of the milli gripper using PID control is made a remarkable improvement in terms of gripping forces.

  • PDF

OMA testing by SLDV for FEM Updating

  • Milla, Brian-Mac;Mehdi Batel;Eddy Dascott;Ben Verbeeck
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.840-840
    • /
    • 2003
  • Operational Modal Analysis (OMA) is a technique for identification of modal parameters by measurement of only the system's response. On many lightweight structures, such as load-speaker cones and disk drive read/write heads, is impossible or impractical to measure the input forces. Another characteristic of lightweight structure is their sensitivity to mass loading from sensors. The Scanning Laser Doppler Vibrometry(SLDV) allows response measurements to be taken without mass loading. One disadvantage of OMA testing compared to tradition input output modal testing is the OMA mode shapes are un-scaled. This means that the mode shape obtained from an OMA test can not used for analytical structural modification studies. However, the un-scaled mode shapes from an OMA test can be used to update a Finite Element Model (FEM). The updated FEM can then be used to analytically predict the effect of structural modifications. This paper will present the results of an OMA test performed on a simple plate and motor in operating conditions. The un-scaled mode shapes from this test will be used to update a FEM model of the system. The updated FEM model will be then be used to predict the effect of attaching a mass to the plate. The shapes predicted by the FEM for the modified system will be compared to a second OMA test on the modified system

  • PDF

기하학적 비선형성을 고려한 종단 질량을 갖는 회전하는 외팔보의 모달 분석 (Modal Analysis for the Rotating Cantilever Beam with a Tip Mass Considering the Geometric Nonlinearity)

  • 김형래;정진태
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.281-289
    • /
    • 2016
  • In this paper, a new dynamic model for modal analysis of a rotating cantilever beam with a tip-mass is developed. The nonlinear strain such as von Karman type and the corresponding linearized stress are used to consider the geometric nonlinearity, and Euler-Bernoulli beam theory is applied in the present model. The nonlinear equations of motion and the associated boundary conditions which include the inertia of the tip-mass are derived through Hamilton's principle. In order to investigate modal characteristics of the present model, the linearized equations of motion in the neighborhood of the equilibrium position are obtained by using perturbation technique to the nonlinear equations. Since the effect of the tip-mass is considered to the boundary condition of the flexible beam, weak forms are used to discretize the linearized equations. Compared with equations related to stiffening effect due to centrifugal force of the present and the previous model, the present model predicts the dynamic characteristic more precisely than the another model. As a result, the difference of natural frequencies loci between two models become larger as the rotating speed increases. In addition, we observed that the mode veering phenomenon occurs at the certain rotating speed.

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames

  • Landi, Luca;Pollioa, Bernardino;Diotallevi, Pier Paolo
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.433-446
    • /
    • 2014
  • The purpose of the research presented in this paper was to investigate the effectiveness of several conventional, multi-modal and adaptive pushover procedures. In particular, an extensive numerical study was performed considering eight RC frames characterized by a variable number of storeys and different properties in terms of regularity in elevation. The results of pushover analyses were compared with those of nonlinear dynamic analyses, which were carried out considering different earthquake records and increasing values of earthquake intensity. The study was performed with reference to base shear-top displacement curves and to different storey response parameters. The obtained results allowed a direct comparison between the pushover procedures, which in general were able to give a fairly good estimate of seismic demand with a tendency to better results for lower frames. The advanced procedures, in particular the multi-modal pushover, provided an improvement of the results, more evident for the irregular frames.

Modal analysis and ambient vibration measurements on Mila-Algeria cable stayed bridge

  • Kibboua, Abderrahmane;Farsi, Mohamed Naboussi;Chatelain, Jean-Luc;Guillier, Bertrand;Bechtoula, Hakim;Mehani, Youcef
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.171-186
    • /
    • 2008
  • The seismic response analysis of an existing bridge needs a mathematical model that can be calibrated with measured dynamic characteristics. These characteristics are the periods and the associated mode shapes of vibration and the modal damping coefficients. This paper deals with the measurements and the interpretation of the results of ambient vibration tests done on a newly erected cable stayed bridge across the Oued Dib River at Mila city in Algeria. The signal analysis of ambient vibration records will permit to determine the dynamic characteristics of the bridge. On the other hand, a 3-D model of the bridge is developed in order to assess the frequencies and the associated modes of vibration. This information will be necessary in the planning of the test on the site (locations of the sensors, frequencies to be measured and the associated mode shapes of vibration). The frequencies predicted by the finite element model are compared with those measured during full-scale ambient vibration measurements of the bridge. In the same way, the modal damping coefficients obtained by the random decrement method are compared to those of similar bridges.

고속 주축의 진동 특성 향상을 위한 베어링의 위치 선정 (Selecting Position of Bearings to Improve Dynamic Characteristics of A High-speed Milling Spindle)

  • 임정숙;황영국;이원창;이춘만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools. to improve tire machining flexibility of machine. tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In the spindle system design, it is very important to improve modal characteristics, and modal analysis is performed in the first place. Therefore in this paper, on the assumption that supporting bearings of spindle was selected most suitable condition, analyzed dynamic characteristics of a high-speed spindle according to its position. Optimal design was applicated to select most suitable position of bearings. Considered tile mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows the natural frequency of 1st bending mode of spindle.

  • PDF

Vibration modelling and structural modification of combine harvester thresher using operational modal analysis and finite element method

  • Zare, Hamed Ghafarzadeh;Maleki, Ali;Rahaghi, Mohsen Irani;Lashgari, Majid
    • Structural Monitoring and Maintenance
    • /
    • 제6권1호
    • /
    • pp.33-46
    • /
    • 2019
  • In present study, Operational Modal Analysis (OMA) was employed to carry out the dynamic and vibration analysis of the threshing unit of the combine harvester thresher as a mechanical component. The main study is to find the causes of vibration and to decrease it to enhance the lifetime and efficiency of the threshing unit. By utilizing OMA, structural modal parameters such as mode shapes, natural frequencies, and damping ratio was calculated. The combine harvester was excited by engine to vibrate different parts and accelerometer sensor collected acceleration signals at different speeds, and OMA was utilized by nonparametric and frequency analysis methods to obtain modal parameters while vibrating in real working conditions. Afterwards, finite element model was designed from the thresher and updated using the data obtained from the modal analysis. Using the conducted analyses, it was specified that proximity of the thresher pass frequency to one of the natural frequencies (16.64 Hz) was the most important effect of vibration in the thresher. Modification process of the structure was carried out by increasing mass required for changing the natural frequency location of the first mode to 12.4 Hz in order to reduce resonance and vibration of the thresher.

Modal Analysis of Rotating Beam Structures Having Complex Configurations Employing Multi-Reference Frames

  • Kim, Jung-Min;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.66-75
    • /
    • 2006
  • A modeling method for the modal analysis of rotating beam structures having complex configurations employing multi-reference frames is presented in the present study. In most structural analysis methods, single reference frame is employed for the modal analysis. For simple structures such as single beam or single plate, the method of employing single reference frame usually provides rapidly converging accurate results. However, for general structures having complex configurations, such a method provides slowly converging, and often erroneous, results. In the present study, the effects of employing multi-reference frames on the convergence and the accuracy of the modal analysis of rotating beam structures having complex configurations are investigated.