• 제목/요약/키워드: Modal Test and Simulation

검색결과 81건 처리시간 0.021초

Flexural Vibration Analysis of a Sandwich Beam Specimen with a Partially Inserted Viscoelastic Layer

  • Park, Jin-Tack;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.347-356
    • /
    • 2004
  • The flexural vibration characteristics of a sandwich beam system with a partially inserted viscoelastic layer were quantitatively studied using the finite element analysis in combination with the sine-sweep experiment. Asymmetric mode shapes of the flexural vibration were visualized by holographic interferometry, which agreed with those obtained by the finite element simulation. Effects of the length and the thickness of the partial viscoelastic layer on the system loss factor (η$\_$s/) and resonant frequency (f$\_$r/) were significantly large for both the symmetric and asymmetric modes of the beam system.

Variation of reliability-based seismic analysis of an electrical cabinet in different NPP location for Korean Peninsula

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.926-939
    • /
    • 2022
  • The area of this study will cover the location-wise seismic response variation of an electrical cabinet in nuclear power point (NPP) based on classical reliability analysis. The location-based seismic ground motion (GM) selection is carried out with the help of probabilistic seismic hazard analysis using PSHRisktool, where the variation of reliability analysis can be understood from the relation between the reliability index and intensity measure. Two different approaches such as the first-order second moment method (FOSM) and Monte Carlo Simulation (MCS) are helped to evaluate and compare the reliability assessment of the cabinet. The cabinet is modeled with material uncertainty utilizing Steel01 as the material model and the fiber section modeling approach is considered to characterize the section's nonlinear reaction behavior. To verify the modal frequency, this study compares the FEM result with recorded data using Least-Squares Complex Exponential (LSCE) method from the impact hammer test. In spite of a few investigations, the main novelty of this study is to introduce the reader to check and compare the seismic reliability assessment variation in different seismic locations and for different earthquake levels. Alongside, the betterment can be found by comparing the result between two considered reliability estimation methods.

Study on wind-induced vibration response of Jiayuguan wooden building

  • Teng Y. Xue;Hong B. Liu;Ting Zhou;Xin C. Chen;Xiang Zhang;Zhi P. Zou
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.245-254
    • /
    • 2023
  • In this paper, the wind-induced response of Jiayuguan wooden building (world cultural heritage) in Northwest China was studied. ANSYS finite element software was used to establish four kinds of building models under different working conditions and carry out modal analysis. The simulation results were compared with the field dynamic test results, obtaining the model which reflects the real vibration characteristics of the wooden tower. Time history data of fluctuating wind speed was obtained by MATLAB programming. Time domain method and ANSYS were used to analyze the wind-induced vibration response time history of Jiayuguan wooden building, obtaining the displacement time history curve of the structure. It was suggested that the wind-induced vibration coefficient of Jiayuguan wooden building is 1.76. Through analysis of the performance of the building under equivalent static wind load, the maximum displacement occurs in the three-story wall, gold column and the whole roof area, and the maximum displacement of the building is 5.39 cm. The ratio of the maximum stress value to the allowable value of wood tensile strength is 45 %. The research results can provide reference for the wind resistant design and protection of ancient buildings with similar structure to Jiayuguan wooden tower.

유한요소법에 의한 평면 TV 새도우마스크의 마이크로포닉 현상 해석 (Analysis of Microphonic Phenomenon for Shadow Mask in Flat TV by FEM)

  • 김정;박수길;강범수
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.89-95
    • /
    • 2002
  • A shadow mask inside the Braun tube of a TV is sustained by springs attached to the glass panel, its vibration cause the picture image to discolor, which is called the microphonic phenomenon. It is found that it results from resonance when the natural frequency of the shadow mask coincides with that of built-in speaker sound. This paper describes experimental and analytical investigations by using FEM on the vibration problem of the shadow mask assembly. The simulation scheme may be efficiently used to develop a new design for a large-screen flat TV.

궤도차량 변속기 출력 하우징의 구조건전성 평가에 대한 연구 (A Study on the Structural Integrity Assessment of the Output Housing in Transmissions of a Tracked Vehicle)

  • 정재웅;이희원;문태상;권준식
    • 한국군사과학기술학회지
    • /
    • 제18권1호
    • /
    • pp.8-14
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. Particularly, transmission housing is important structure which supports the transmission, and is made of aluminum alloy. Thus, structural robustness against such mechanical loading or vibration must be attained. Structural reliability evaluation through FEM analysis can save time and cost of the actual tests. In this study, structural evaluation is conducted on output housing of transmission, which is core component of tracked vehicle, using the simulation program. In addition, transmission dynamo test is performed to evaluate structural robustness of the output housing against the vibration which can be produced during the transmission operation.

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석 (System Mode and Sensitivity Analysis for Brake Judder Reduction)

  • 황인진;박경진
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.

동력분산형 고속철도 주행성능 동역학 해석을 위한 기반기술 개발 (Development of fundamental technology for dynamic analysis of the high speed EMU (Electric Multiple Unit))

  • 윤지원;박태원;전갑진;박성문;정광열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.380-386
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from that of previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest all of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In the paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper dynamic models including air-suspension system, wheel-rail, bogie and car-body is developed according to the vehicle simulation scenario. The basic platform for the development of dynamic solver is prepared using nodal, modal coordinate system and wheel-rail contact module. Operating scenario is prepared using commercial dynamic analysis program and used for development of dynamic model, which contains many parts such as carbodies, bogies and suspension systems. Furthermore, international safety standard is applied for final verification of the system. Finally, the reliability of the dynamic model will be verified with test results in the further researches. This research will propose a better solution when test results shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF

미소진동 영향성 예측을 위한 인공위성 유한요소모델 보정 (Satellite finite element model updating for the prediction of the effect of micro-vibration)

  • 임재혁;은희광;김대관;김홍배;김성훈
    • 한국항공우주학회지
    • /
    • 제42권8호
    • /
    • pp.692-700
    • /
    • 2014
  • 본 논문에서는 미소진동 영향성 예측을 위한 인공위성 유한요소모델 보정에 관해 기술한다. 최근 지구 저궤도에 발사되는 상업용 지구관측위성의 경우, 수요자의 요구로 인해 주어진 시간 안에 다양한 지역의 많은 영상을 공급해야 한다. 이를 구현하기 위해 고용량휠, 다축 김발을 탑재한 안테나 등 다양한 구동기를 사용한다. 그러나 이러한 구동기는 작동 시 미소진동을 유발할 수 있으며, 이러한 미소진동은 매우 작기는 하지만 지구관측 탑재체를 가진하여 영상품질을 저감시킬 수 있다. 이러한 미소진동에 의한 영향성을 살펴보기 위해서 유한요소모델과 미소진동원 시험결과를 결합한 연성해석을 실시하며, 해석에 앞서 유한요소모델 보정을 실시한다. 보정 전후의 주파수 차이, 모드형상 상관관계, 주파수응답함수 상관관계를 비교하여 개선된 유한요소모델의 품질을 평가하였다.

신륵사 다층전탑의 구조해석에 대한 연구 (Analytical Study of Static and Dynamic Responses of Multi-story Brick Pagoda of Silleuksa Temple)

  • 이가윤;이성민;이기학
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.33-40
    • /
    • 2022
  • Recently, cultural heritages in South Korea gain many interests of restoration and preservation from the government since many of that have been severely damaged during earthquakes. Many previous studies in both terms of experimental and analytical approaches have been done to examine structural behavior and decide appropriate methods of preservation. Being motivated by such researches, this research aims to investigate a religious stone pagoda dated back to the Goryeo Dynasty in Korea. The structure consists of a granite stone foundation and baked bricks, which resembles the shape of traditional pagodas. In order to examine the structural behavior of the pagoda, an analytical model is implemented using ANSYS, a comprehensive engineering simulation platform. For the time history analysis of the pagoda, several earthquake excitations are chosen and input to simulation modeling. Seismic response of the tower such as time domain, natural frequency, modal shapes and peak acceleration measured at each layer are presented and discussed. In addition, the amplification ratio of the tower is calculated from the accelerations of each layer to determine tower stability in accordance with Korean seismic design guide. The determination and evaluation of status and response of the brick tower by simulation analysis play an important role in the preservation of history as well as valuable architectural heritages in South Korea.