• Title/Summary/Keyword: Modal Test and Simulation

Search Result 81, Processing Time 0.041 seconds

Mechanism of ovalling vibrations of cylindrical shells in cross flow

  • Uematsu, Yasushi;Tsujiguchi, Noboru;Yamada, Motohiko
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.85-100
    • /
    • 2001
  • The mechanism of wind-induced ovalling vibrations of cylindrical shells is numerically investigated by using a vortex method. The subject of this paper is limited to a two-dimensional structure in the subcritical regime. The aerodynamic stability of the ovalling vibrations in the second to fourth circumferential modes is discussed, based on the results of a forced-vibration test. In the analysis, two modal configurations are considered; one is symmetric and the other is anti-symmetric with respect to a diameter parallel to the flow direction. The unsteady pressures acting on a vibrating cylinder are simulated and the work done by them for one cycle of a harmonic motion is computed. The effects of a splitter plate on the flow around the cylinder as well as on the aerodynamic stability of the ovalling vibrations are also discussed. The consideration on the mechanism of ovalling vibrations is verified by the results of a free-vibration test.

Evaluation of Dynamic Characteristics of Rubber Materials Using a Double Cantilever Sandwich Beam Method (양팔 샌드위치보 시험법에 의한 EPDM고무의 동특성 평가 연구)

  • Kim, Kwang-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1393-1400
    • /
    • 2002
  • A double cantilever sandwich-beam method has been applied to the evaluation of the frequency dependence of dynamic elastic modulus and material loss factor of EPDM rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Effects of the rubber layer length on the dynamic characteristics were also investigated: reliable values were measured when the length of the inserted rubber layer was larger than and equal to 50% of the effective specimen length. The values were compared with those obtained by the dynamic mechanical analysis and the simple resonant test. Relationships of the dynamic characteristics of rubbers with frequency could be determined using the least square error method.

Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement (차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석)

  • Kim, Kee-Joo;Ju, Hyung-Jun;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.

Comparative Studies on the Simulation for the Monthly Runoff (월유출량의 모의발생에 관한 비교 연구)

  • 박명근;서승덕;이순혁;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.110-124
    • /
    • 1996
  • This study was conducted to simulate long seres of synthetic monthly flows by multi-season first order Markov model with selection of best fitting frequency distribution, harmonic synthetic and harmonic regression models and to make a comparison of statistical parameters between observes and synthetic flows of five watersheds in Geum river system. The results obtained through this study can be summarized as follow. 1. Both gamma and two parameter lognormal distributions were found to be suitable ones for monthly flows in all watersheds by Kolmogorov-Smirnov test. 2. It was found that arithmetic mean values of synthetic monthly flows simulated by multi-season first order Markov model with gamma distribution are much closer to the results of the observed data in comparison with those of the other models in the applied watersheds. 3. The coefficients of variation, index of fluctuation for monthly flows simulated by multi-season first order Markov model with gamma distribution are appeared closer to those of the observed data in comparison with those of the other models in Geum river system. 4. Synthetic monthly flows were simulated over 100 years by multi-season first order Markov model with gamma distribution which is acknowledged as a suitable simulation modal in this study.

  • PDF

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems (시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

Resonance avoidance and Safety Evaluation of Vertical Pump (입형펌프의 공진회피와 안전성 평가)

  • Jeong, Wooyoung;Song, Jindae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.698-702
    • /
    • 2013
  • This paper considers the vertical pumps resonance and soundness. Normally large vertical pump's rotating speed is low, so the low natural mode can make a resonance on the motor and motor stand assembly. The pump resonance makes a very high vibration and trouble on the pump systems. Thus to avoid pump resonance when the pump is on the resonance region, we give the added mass method and evaluate the structure soundness by computer simulation and test on the site. Furthermore we evaluate the modal sensitivity and expect running conditions by the using ISO10814.

  • PDF

Mechanical Strength Analysis of Station Type Po1ymer Insulator (좌립형 폴리머 지지애자의 기계적 강도 해석)

  • 조한구;박기호;한동희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.85.1-88
    • /
    • 2000
  • FRP has been used very much as high strength core materials for insulators because of its high strength and good insulation properties. In this study cantilever, tension and torsion stress were simulation along to the unidirection glass fiber. In addition, FRP was made by pultrusion method. This paper proposed the procedure of the finite element model updating and pretest using the commerical finite element code MSC.Nastran. To ehance the efficiency of experimental modal analysis, we proposed the process which is the selection of the locations and the number of measurement points for pre-test.

  • PDF

Mechanical Strength Analysis of Station Type Polymer Insulator (좌립형 폴리머 지지애자의 기계적 강도 해석)

  • 조한구;박기호;한동희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.85-88
    • /
    • 2000
  • FRP has been used very much as high strength core materials for insulators because of its high strength and good insulation properties. In this study cantilever, tension and torsion stress were simulation along to the unidirection glass fiber. In addition, FRP was made by pultrusion method. This paper proposed the procedure of the finite element model updating and pretest using the commercial finite element code MSC. Nastran. To enhance the efficiency of experimental modal analysis, we proposed the process which is the selection of the locations and the number of measurement points for pre-test.

  • PDF

Analysis of Dynamic Characteristics and Improvement of Vibration Table for Expendable Pattern Casting Process (소실모형주조용 진동장치의 동특성 분석 및 개선)

  • 이은경;설진수;이경환;최경환;임경화
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • Vibration table is required to obtain high packing density in expendable pattern casting process. Packing density. which is an important manufacture factor, depends on the vibration pattern induced by vibration table. In general, circular vibration pattern is recognized as the best pattern. The existing vibration table is investigated to identify current vibration pattern and consider a countermeasure. Modal test is utilized to identify the dynamic characteristics of vibration table, and finite element method is used to propose the improved design. In simulation using finite element method, the position of stiffeners is obtained to satisfy the required dynamic characteristics.