• Title/Summary/Keyword: Modal Strain Energy Method

Search Result 73, Processing Time 0.02 seconds

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

Structural Health Monitoring of Full-Scale Concrete Girder Bridge Using Acceleration Response (가속도 응답을 이용한 실물 콘크리트 거더 교량의 구조건전성 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2010
  • In this paper, a two-phase structural health monitoring system using acceleration response signatures are presented to firstly alarm the change in structural condition and to secondly detect the changed location for full-scale concrete girder bridges. Firstly, Mihocheon Bridge which is a two-span continuous concrete girder bridge is selected as the target structure. The dynamic response features of Mihocheon Bridge are extracted by forced vibration test using bowling ball. Secondly, the damage alarming occurrence and the damage localization techniques are selected to design two-phase structural health monitoring system for Mihocheon Bridge. As the damage alarming techniques, auto-regressive model using time-domain signatures, correlation coefficient of frequency response function and frequency response ratio assurance criterion are selected. As the damage localization technique, modal strain energy-based damage index method is selected. Finally, the feasibility of two-phase structural health monitoring systems is evaluated from static loading tests using a dump truck.

Hybrid Structural Health Monitoring of Steel Plate-Girder Bridges using Acceleration-Impedance Features (가속도-임피던스 특성을 이용한 강판형교의 하이브리드 구조건전성 모니터링)

  • Hong, Dong-Soo;Do, Han-Sung;Na, Won-Bae;Kim, Jeong-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.61-73
    • /
    • 2009
  • In this paper, hybrid health monitoring techniques using acceleration-impedance features are newly proposed to detect two damage-type in steel plate-girder bridges, which are girder's stiffness-loss and support perturbation. The hybrid techniques mainly consists of three sequential phases: 1) to alarm the occurrence of damage in global manner, 2) to classify the alarmed damage into subsystems of the structure, and 3) to estimate the classified damage in detail using methods suitable for the subsystems. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation (RMSD) method. The feasibility of the proposed hybrid technique is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid acceleration-impedance signatures were measured for several damage scenarios. Also, the effect of temperature on the accuracy of the impedance-based damage monitoring results are experimentally examined from combined scenarios of support damage cases and temperature changes.