• Title/Summary/Keyword: Modal Loss Factor

Search Result 52, Processing Time 0.028 seconds

Damage detection in jacket type offshore platforms using modal strain energy

  • Asgarian, B.;Amiri, M.;Ghafooripour, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.325-337
    • /
    • 2009
  • Structural damage detection, damage localization and severity estimation of jacket platforms, based on calculating modal strain energy is presented in this paper. In the structure, damage often causes a loss of stiffness in some elements, so modal parameters; mode shapes and natural frequencies, in the damaged structure are different from the undamaged state. Geometrical location of damage is detected by computing modal strain energy change ratio (MSECR) for each structural element, which elements with higher MSECR are suspected to be damaged. For each suspected damaged element, by computing cross-modal strain energy (CMSE), damage severity as the stiffness reduction factor -that represented the ratios between the element stiffness changes to the undamaged element stiffness- is estimated. Numerical studies are demonstrated for a three dimensional, single bay, four stories frame of the existing jacket platform, based on the synthetic data that generated from finite element model. It is observed that this method can be used for damage detection of this kind of structures.

SEA of Coupled Beams considering Finite Mobility of Excited Subsystem (가진 하부시스템의 유한 모빌리티를 고려한 연성 보의 SEA 적용)

  • Lim, Jong-Yun;Hong, Suk-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.79-83
    • /
    • 2005
  • SEA is a useful tool to predict noise and vibration response in high frequency region but has a weak point not to be able to express modal behavior in low frequency region. For a structure with middle subsystem having relatively higher modal density than excited subsystem and receiving subsystem, we studied the possibility that the modal behavior of receiving subsystem can express by considering finite mobility of excited subsystem. For a simply three-coupled beams which is chosen for feasibility study, the response of receiving beam was investigated with varying the length & area moment of inertia of middle beam. In case that the middle beam has relatively higher modal density than exciting beam, the application to finite mobility of excited beam led to express modal behavior of receiving beam relatively well.

  • PDF

A Study on Determination of Damping Layer Thickness to Reduce Heavy Impact Noise in Apartment Building Floors (공동주택 층간 중량충격소음의 효율적 저감을 위한 바닥구조 감쇠층 두께 선정에 관한 연구)

  • Shin, Yun-Ho;Kim, Kwang-Joon;Kim, Min-Bae;Nam, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.936-941
    • /
    • 2005
  • Apartment building floor with a damping layer can be modeled as a sandwich plate. In order to reduce low frequency noise more efficiently due to heavy impact on such a floor, thickness of the damping layer needs to be optimized at the design stage. Modal loss factors are determined in this paper by RKU equation which is popular In sandwich plate theories. Optimum damping layer thickness determined at each mode is weighted so that several modes in the frequency range of interest can be included in a more systematic way. Furthermore, to reflect frequency-dependent characteristics of complex stiffness of the damping layer, an iteration method is proposed in finding modal frequencies.

  • PDF

A Study on the Optimum Design of Constrained layer for the Damping of Flexural Vibration (굽힘진동 감쇠를 위한 구속층의 최적설계에 관한 연구)

  • 김사수;이민우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.95-101
    • /
    • 1997
  • A general method is presented for the analysis of the damping effectiveness of viscoelastic layer applied to elastic beam. The damping is attributed to the shear deformations of the treatment. Specific results are then given for sandwich beams with dissipative cores. The calculated results by this method are validated by comparison with the experimental results. Optimum design of a viscoelastic damping layer which is constrainedly cohered on a steel beam is discussed from the viewpoint of the modal loss factor. An object function is a loss factor of 3-layered beam and design variable is the thickness of constraining layer and viscoelastic layer. Optimum thickness can be obtained when 3-layered beam has a maximum loss factor.

  • PDF

An Experimental Study on Acoustic Performance of Splitter Silencers in Large Maritime Gas Turbine Engines (해상용 가스터빈의 스플리터 소음기 성능에 대한 실험적 연구)

  • Baek, Seonghyeon;Lee, Kanghee;Kang, Kyungsik;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.503-509
    • /
    • 2015
  • Based on ISO 7235, an experimental setup to measure the acoustic performance of splitter type dissipative silencers was fabricated. The length of each duct, sound source, microphone locations, modal filter, and anechoic termination were considered in the design of this setup. The modal filter is a particularly important factor because it affects the limit of measurement. The effects of number of splitters, absorptive material density, perforate plate, and media on the noise reduction of the sample silencers were experimentally investigated. The experimental results show that the insertion loss of a silencer with media, high perforate opening, and higher number of splitters increases especially at higher frequencies.

Design and Measurement of Dissipative Silencers for Noise Reduction of Large Maritime Gas Turbine Engines (해상용 대형 가스터빈의 소음 저감을 위한 흡음형 소음기의 설계 및 성능 측정)

  • Baek, Seonghyeon;Lee, Kanghee;Gwon, Daehun;Lee, Iljae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.367-371
    • /
    • 2014
  • Based on ISO 7235, an experimental setup to measure the acoustic performance of splitter type dissipative silencers are fabricated. The length of each duct, sound source, microphone locations, modal filter, and anechoic termination are considered in the design of this setup. The modal filter is a particularly important factor because it affects the limit of measurement, which is also determined by the amount of flanking transmission of sound generated by the sound source to microphones. The effects of absorptive materials, media which covers the materials, and the number of splitters on the noise reduction of the sample silencers are experimentally investigated. The insertions loss of silencers with media and higher number of splitters increases, especially at higher frequencies.

  • PDF

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

Viscoelastic Damping Treatment Analysis and Aeroelasticity for Vibration Reductions of a Hingeless Composite Helicopter Rotor System (무힌지 복합재 헬리콥터 로터 시스템의 진동 저감을 위한 점탄성 감쇠처리 해석 및 공탄성 연구)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this research, vibration reduction and aeroelastic stability of a composite hingeless rotor hub flexure with viscoelastic constrained layer damping treatment(CLDT) were investigated. The composite flexures with viscoelastic CLDT were applied to hingeless rotor system to improve the in-plane stability of the lead-lag motion causing resonance. The modal test was performed and dynamic properties(natural frequency and loss factor) were acquired. Also, complex eigenvalue analysis(SOLlO7) in the NASTRAN structural analysis module was performed and compared with results of the modal test. To insure aeroelastic stability, damping ratio analyses of the hingeless rotor system with CLDT were accomplished at hovering condition due to collective pitch angle changes. Satisfactory results of increasing structural damping and stability were obtained.

  • PDF

Experimental Study On Power Flow Analysis of Vibration of a Coupled Plate (연성 평판 진동에 대한 파워흐름해석법의 실험적 연구)

  • Lee, G.H.;Kil, H.G.;Hwang, S.G.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.797-800
    • /
    • 2006
  • The power flow analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiment has been performed to observe the analytical characteristics of the power flow analysis of the vibration of a plate. In the experiment, the loss factor of the plate and the input mobility at a source point have been measured. The data for the loss factor has been used as the input data to predict the vibration of the plate with PFA. The frequency response functions have been measured over the surface of the plate. The comparison between the experimental results and the predicted results for the frequency responsefunctionshasbeenperformed.

  • PDF

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.665-671
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximize loss factor using a numerical search method. The fractional derivative model can describe damping characteristics of the viscoelastic damping material, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kerwin(RUK) equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are obtained with respect to ambient temperatures and thickness ratios of beam and damping layer.

  • PDF