• Title/Summary/Keyword: Mobility of electrons

Search Result 72, Processing Time 0.038 seconds

Study of the electrical propety for $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$((001) with a direct gap (직접천이 띠간격을 갖는 $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$(001)의 전기적 특성 연구)

  • 박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.989-995
    • /
    • 2000
  • G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ is a very promising material for the high-speed device due to the fact that electron and hole mobilities for the strained G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ are greatly enhanced. Because G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ has a direct band gap for the proper combination of x and y, it can be applied to the optoelectronic device. Therefore, the study of the electrical property for G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$(001) with a direct energy gap is needed. G $e_{1-x}$ S $n_{x}$ layer can not be grown thickly due to the large difference of lattice constants. This fact prefers the structure of the device where electrons and holes move in the plane direction. The transverse mobilities of electron and hole for G $e_{0.8}$S $n_{0.2}$Ge(001) are 2~3 times larger than those for Ge/Ge/ sub0.8/S $n_{0.2}$(001). Therefore, G $e_{0.8}$S $n_{0.2}$Ge(001) is expected to be better than Ge/G $e_{0.8}$S $n_{0.2}$(001) for the development of the high-speed device.h-speed device.device.h-speed device. device.

  • PDF

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Growth and Characterization of ZnSe Thin Film for Blue Diode (청색 Diode 개발을 위한 ZnSe 박막성장과 특성에 관한 연구)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.533-538
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at 450$^{\circ}C$ Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter a$\_$o/ was 5.6687 ${\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 29 3K. The band gap given by the transmission edge changed from 2.7005 eV at 293 K to 2.8739 eV at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, $\Gamma$$\_$8/ and $\Gamma$$\_$7/ to conduction band $\Gamma$$\_$6/ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting Δso is 0.0981 eV. From the PL spectra at 10 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0612 eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0172 eV, 0.0310 eV, respectively.

  • PDF

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

2DEG Transport Analysis in AlGaAs/GaAs Interface by MONTE-CARLO Method (MONTE-CARLO 방법에 의한 AlGaAs/GaAs 계면의 전자 전달특성 분석)

  • Nam, Seung-Hun;Jung, Hak-Ki;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.94-101
    • /
    • 1989
  • Transport properties of 2DEG at AlGaAs/GaAs interface such as average electron energy, flight distance, each valley occupancy ratio, average electron velocity for various fields are investigated by MONTE-CARLO method. As the electric field increases, more electrons transit drastically from (000) valley to (000) upper valley. This phenomenon shows the nonstationary effect such as velocity overshoot. The duration of the transient decreases from about 1.4 psec for electric field E = 7KV/cm to about 0.7 psec for 12KV/cm. The average electron velocity during transient transport in 2DEG is about 8 times the steady-state velocity for E = 12KV/cm at room temperature. In comparison with bulk GaAs the peak velocity in the 2DEG is higher than that in even pure bulk GaAs at electric field E = 7 KV/cm. On the basis of the fact that the electrons in the 2DEG have larger peak velocity and shorter transient time of velocity than those in the bulk GaAs, it is suggested that the device with 2DEG may obtain higher mobility than that with bulk GaAs.

  • PDF

Growth and Electrical Properties of Spinel-type ZnCo2O4 Thin Films by Reactive Magnetron Sputtering (반응성 때려내기 방법에 의한 스피넬 형 ZnCo2O4 박막의 성장과 전기적 물성)

  • Song, In-Chang;Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-jin;Kim, Do-jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.519-523
    • /
    • 2003
  • We report the synthesis of cubic spinel $ZnCo_2$$O_4$thin films and the tunability of the conduction type by control of the oxygen partial pressure ratio. Zinc cobalt oxide films were grown on$ SiO_2$(200 nm)/Si substrates by reactive magnetron sputtering method using Zn and Co metal targets in a mixed Ar/$O_2$atmosphere. We found from X-ray diffraction measurements that the crystal structure of the zinc cobalt oxide films grown under an oxygen-rich condition (the $O_2$/Ar partial pressure ratio of 9/1) changes from wurtzite-type $Zn_{1-x}$ $Co_{X}$O to spinel-type $ZnCo_2$$O_4$with the increase of the Co/Zn sputtering ratio,$ D_{co}$ $D_{zn}$ . We noted that the above structural change accompanied by the variation of the majority electrical conduction type from n-type (electrons) to p-type (holes). For a fixed $D_{co}$ $D_{zn}$ / of 2.0 yielding homogeneous spinel-type $_2$O$ZnCo_4$films, the type of the majority carriers also varied, depending on the$ O_2$/Ar partial pressure ratio: p-type for an $O_2$-rich and n-type for an Ar-rich atmosphere. The maximum electron and hole concentrations for the Zn $Co_2$ $O_4$films were found to be 1.37${\times}$10$^{20}$ c $m^{-3}$ and 2.41${\times}$10$^{20}$ c $m^{-3}$ , respectively, with a mobility of about 0.2 $\textrm{cm}^2$/Vs and a high conductivity of about 1.8 Ω/$cm^{-1}$ /.

Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs (Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석)

  • Han In-Shik;Ji Hee-Hwan;Kim Kyung-Min;Joo Han-Soo;Park Sung-Hyung;Kim Young-Goo;Wang Jin-Suk;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.

Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction (n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드)

  • Han, W.S.;Kim, Y.Y.;Kong, B.H.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

Electrical and Optical Properties of phosphorus doped ZnO Thin Films at Various Post-Annealing Temperatures (후열 처리 온도 변화에 따른 phosphorus doped ZnO 박막의 전기적 및 광학적 특성)

  • Han, Jung-Woo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • The effects of post-annealing temperature on the optical and electrical properties of P-doped ZnO thin films grown on sapphire substrate have been investigated under oxygen ambient. The XRD shows that regardless of the post-annealing temperature, all P-doped ZnO thin films indicate the c-axis orientation. The results of hall effect measurements indicate the P-doped ZnO thin film annealed at $850^{\circ}C$ exhibits p-type behavior with hole concentration of $1.18{\times}1016cm^{-3}$ and hole mobility of $0.96cm^2/Vs$. The low-temperature (10K) Photoluminescence results reveal that the peak related to the neutral-acceptor exciton (A0X), free electrons to neutral acceptor (FA) and donor acceptor pair (DAP) at 3.351ev, 3.283eV and 3.201eV are observed in the films showing p-type behavior with acceptor. The optimization of deposition and post-annealing conditions will certainly make the P-doped ZnO thin films promising materials for the application to the next generation of optical devices.

Chemical Analysis and Thermoelectric Properties of the PbSnTe Semiconductors (화학조성에 따른 PbSnTe계 반도체의 열전특성조사)

  • Oh, Kyu-Whan;Oh, Seung-Mo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 1990
  • The semiconducting $(Pb_1\;_xSn_x)_1$ $_yTe_y$, one of the low - temperature thermoelectric materials, has been prepared and its chemical composition and nonstoichiometry has been analyzed. The content of Pb in the specimens was determined by the complexometric back - titration method with EDTA and Pb(II) standard solutions. Te - content was analyzed with the redox titration method. The electrical conductivity and the thermoelectric power have also been measured by the DC 4 - probe and the heat-pulse technique, respectively. All of the specimens showed a nonstoichiometric behavior in their chemical compositions (Te excess), thus gave rise to a p - type semiconducting property, and the nonstoichoimetry became bigger as the Sn - content increased. The thermoelectric power vs. temperature results have been analyzed upon the basis of the Fermi level vs. temperature profiles in the saturation regime. The specimen of x=0.1 evolved a transition from p - to n - type property at about 670K, which has been explained by the fact that the mobility of electrons is bigger than that of holes in the temperature range of the intrinsic regime.

  • PDF