• Title/Summary/Keyword: Mobilenetv3

Search Result 1, Processing Time 0.013 seconds

Implementation of Sports Video Clip Extraction Based on MobileNetV3 Transfer Learning (MobileNetV3 전이학습 기반 스포츠 비디오 클립 추출 구현)

  • YU, LI
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.897-904
    • /
    • 2022
  • Sports video is a very critical information resource. High-precision extraction of effective segments in sports video can better assist coaches in analyzing the player's actions in the video, and enable users to more intuitively appreciate the player's hitting action. Aiming at the shortcomings of the current sports video clip extraction results, such as strong subjectivity, large workload and low efficiency, a classification method of sports video clips based on MobileNetV3 is proposed to save user time. Experiments evaluate the effectiveness of effective segment extraction. Among the extracted segments, the effective proportion is 97.0%, indicating that the effective segment extraction results are good, and it can lay the foundation for the construction of the subsequent badminton action metadata video dataset.