• Title/Summary/Keyword: Mobile Streaming

Search Result 266, Processing Time 0.029 seconds

An Experimental Analysis of Linux TCP Variants for Video Streaming in LTE-based Mobile DaaS Environments (LTE 기반 모바일 DaaS 환경에서 비디오 스트리밍을 위한 Linux TCP 구현물의 실험적 성능 분석)

  • Seong, Chaemin;Hong, Seongjun;Lim, Kyungshik;Kim, Dae Won;Kim, Seongwoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.241-255
    • /
    • 2015
  • Recent network environment has been rapidly evolved to cloud computing environment based on the development of the Internet technologies. Furthermore there is an increasing demand on mobile cloud computing due to explosive growth of smart devices and wide deployment of LTE-based cellular networks. Thus mobile Desktop-as-a-Service(DaaS) could be a pervasive service for nomadic users. In addition, video streaming traffic is currently more than two-thirds of mobile traffic and ever increasing. All such trends enable that video streaming in mobile DaaS could be an important concern for mobile cloud computing. It should be noted that the performance of the Transmission Control Protocol(TCP) on cloud host servers greatly affects Quality of Service(QoS) of video streams for mobile users. With widely deployed Linux server platforms for cloud computing, in this paper, we conduct an experimental analysis of the twelve Linux TCP variants in mobile DaaS environments. The results of our experiments show that the TCP Illinois outperforms the other TCP variants in terms of wide range of packet loss rate and propagation delay over LTE-based wireless links between cloud servers and mobile devices, even though TCP CUBIC is usually used in default in the current Linux systems.

Multi-Level Streaming Using Fuzzy Similarity in P2P Distribution Mobile Networks (P2P 분산 모바일 네트워크상에서 퍼지 유사도를 이용한 멀티-레벨 스트리밍)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.364-371
    • /
    • 2011
  • In P2P distribution mobile networks, QoS of streaming media services are under heavy influence from overheads such as congestion, latency, and interference. The problem is further complicated by the fact that the popularity of media objects changes over time. This paper proposes a new FSMS+ (Fuzzy Similarity-based Multi-level Streaming Scheme) which minimizes performance degradation of streaming services due to overhead. We then utilize fuzzy similarity-based relevance that can dynamically stream the streaming media object with minimum overhead. The simulation result showed that the proposed scheme has better performance in retransmission rate, congestion control rate and latency rate than the other existing methods of distance method, DC (disk caching) method, and prefix method.

Cross-layer Video Streaming Mechanism over Cognitive Radio Ad hoc Information Centric Networks

  • Han, Longzhe;Nguyen, Dinh Han;Kang, Seung-Seok;In, Hoh Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3775-3788
    • /
    • 2014
  • With the increasing number of the wireless and mobile networks, the way that people use the Internet has changed substantively. Wireless multimedia services, such as wireless video streaming, mobile video game, and mobile voice over IP, will become the main applications of the future wireless Internet. To accommodate the growing volume of wireless data traffic and multimedia services, cognitive radio (CR) and Information-Centric Network (ICN) have been proposed to maximize the utilization of wireless spectrum and improve the network performance. Although CR and ICN have high potential significance for the future wireless Internet, few studies have been conducted on collaborative operations of CR and ICN. Due to the lack of infrastructure support in multi-hop ad hoc CR networks, the problem is more challenging for video streaming services. In this paper, we propose a Cross-layer Video Streaming Mechanism (CLISM) for Cognitive Radio Ad Hoc Information Centric Networks (CRAH-ICNs). The CLISM included two distributed schemes which are designed for the forwarding nodes and receiving nodes in CRAH-ICNs. With the cross-layer approach, the CLISM is able to self-adapt the variation of the link conditions without the central network controller. Experimental results demonstrate that the proposed CLISM efficiently adjust video transmission policy under various network conditions.

Adaptive Multiple TCP-connection Scheme to Improve Video Quality over Wireless Networks

  • Kim, Dongchil;Chung, Kwangsue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4068-4086
    • /
    • 2014
  • Due to the prevalence of powerful mobile terminals and the rapid advancements in wireless communication technologies, the wireless video streaming service has become increasingly more popular. Recent studies show that video streaming services via Transmission Control Protocol (TCP) are becoming more practical. TCP has more advantages than User Diagram Protocol (UDP), including firewall traversal, bandwidth fairness, and reliability. However, each video service shares an equal portion of the limited bandwidth because of the fair sharing characteristics inherent in TCP and this bandwidth fair sharing cannot always guarantee the video quality for each user. To solve this challenging problem, an Adaptive Multiple TCP (AM-TCP) scheme is proposed in this paper to guarantee the video quality for mobile devices in wireless networks. AM-TCP adaptively controls the number of TCP connections according to the video Rate Distortion (RD) characteristics of each stream and network status. The proposed scheme can minimize the total distortion of all participating video streams and maximize the service quality by guaranteeing the quality of each video streaming session. The simulation results show that the proposed scheme can significantly improve the quality of video streaming in wireless networks.

Dynamic Adaptive Streaming over HTTP with Buffer Based Opportunistic Control of Energy Communication Mode (버퍼 기반 에너지 통신모드 기회적 제어를 통한 동적 적응 비디오 스트리밍)

  • Kim, Seohyang;Oh, Hayoung;Kim, Chongkwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.458-463
    • /
    • 2015
  • These days, streaming users are using ABR (Adaptive Bitrate) technique services by requesting the most adequate video rate selectively based on their own channel states. Most ABR related video rate adaptation techniques are only focused on real-time bitrate adaptations based on their own channel state, and misses energy limited characteristics that come from a mobile device's battery dependence. In other words, the mobile device's important characteristics and accompanying energy consumption are not being considered and causes dissatisfaction over streaming services. In this paper, we propose energy efficient prefetching based dynamic adaptive video streaming techniques, which saves unnecessary consumed energy while providing video rates of the same performance. Our scheme continuously turns off energy modules with enough streaming in the buffer and turns on in case of the opposite situation to save energy. Through the performance evaluation, this study's proposed scheme is 60% better than the previous work at global average mobile download speed.

Autonomic Multimedia Transcoding Algorithm for Seamless Streaming Media of Mobile Clients (이동 단말에서 끊임없는 스트리밍 미디어를 위한 오토노믹 멀티미디어 트랜스코딩 알고리즘)

  • Han, Woo-Ram;Heo, Nan-Sook;Park, Chong-Myung;Seo, Dong-Mahn;Jung, In-Bum
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.260-270
    • /
    • 2007
  • Owing to the improved wireless communication technologies, it is possible to provide streaming service of multimedia with PDAs and mobile phones in addition to desktop PCs. Since mobile client devices have low computing power and low network bandwidth due to wireless network, the transcoding technology to adapt media for mobile client devices considering their characteristics is necessary. However, since mobile clients use wireless network and the wireless network have less stable bandwidth according to distance from AP and environments, it is hard to support stable QoS to mobile clients. In this paper, we propose a dynamic bit rate control method for transcoding in order to supprot stable QoS of streaming media service to mobile clients via wireless network. The proposed method is shown to serve seamless streaming media service with adaptive bit rate control according to state of wireless network in real time and to reduce transmission failure from experiment.

Understanding Watching Patterns of Live TV Programs on Mobile Devices: A Content Centric Perspective

  • Li, Yuheng;Zhao, Qianchuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3635-3654
    • /
    • 2015
  • With the rapid development of smart devices and mobile Internet, the video application plays an increasingly important role on mobile devices. Understanding user behavior patterns is critical for optimized operation of mobile live streaming systems. On the other hand, volume based billing models on cloud services make it easier for video service providers to scale their services as well as to reduce the waste from oversized service capacities. In this paper, the watching behaviors of a commercial mobile live streaming system are studied in a content-centric manner. Our analysis captures the intrinsic correlation existing between popularity and watching intensity of programs due to the synchronized watching behaviors with program schedule. The watching pattern is further used to estimate traffic volume generated by the program, which is useful on data volume capacity reservation and billing strategy selection in cloud services. The traffic range of programs is estimated based on a naive popularity prediction. In cross validation, the traffic ranges of around 94% of programs are successfully estimated. In high popularity programs (>20000 viewers), the overestimated traffic is less than 15% of real happened traffic when using upper bound to estimate program traffic.

P2P-based multimedia streaming system for a lightweight mobile platform (초경량 모바일 플랫폼에서 효율적인 P2P기반 멀티미디어 스트리밍 시스템)

  • Jeon Seong-Kyu;Kim Tae-Hyung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.601-603
    • /
    • 2005
  • 무선인터넷 환경이 점점 더 빠른 속도로 발전해 나가는 환경에 있어서 모바일 디바이스의 멀티미디어 Streaming 서비스에 대한 효율적인 측면이 강조되고 있다. 하지만 기존의 네트워크 환경에서 모바일 디바이스의 제한된 측면인 CPU Performance, Memory Restriction등으로 인해 모바일 Streaming 서비스는 여러 문제점을 야기 시킬 수 있다. 본 논문에서는 Lightweight Mobile platform에서 P2P 방식의 효율적인 멀티미디어 Streaming 방식을 제안하고 구현하여 모바일 디바이스의 단점을 극복할 수 있도록 시스템을 설계하였다.

  • PDF

A Mobile P2P Streaming Architecture for Efficient Handover (효율적인 핸드오버를 위한 모바일 P2P 스트리밍 구조)

  • Kim, Sang-Jin;Kim, Eun-Sam;Hwang, Ho-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In this paper, we propose an efficient mobile P2P streaming architecture to minimize playback jitters in P2P overlay networks based on wired/wireless networks even though mobile peers experience the handover. In this architecture, mobile peers receive data in a push manner to maximize the data receiving speed before and after the handover. In addition, they can maintain the buffering above a specific level through handover prediction and re-selection of neighbor peers. By simulation experiments, we show that our proposed architecture can improve the performance significantly when the handover occurs compared to the existing mesh structure.

Adaptive Multi-level Streaming Service using Fuzzy Similarity in Wireless Mobile Networks (무선 모바일 네트워크상에서 퍼지 유사도를 이용한 적응형 멀티-레벨 스트리밍 서비스)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3502-3509
    • /
    • 2010
  • Streaming service in the wireless mobile network environment has been a very challenging issue due to the dynamic uncertain nature of the channels. Overhead such as congestion, latency, and jitter lead to the problem of performance degradation of an adaptive multi-streaming service. This paper proposes a AMSS (Adaptive Multi-level Streaming Service) mechanism to reduce the performance degradation due to overhead such as variable network bandwidth, mobility and limited resources of the wireless mobile network. The proposed AMSS optimizes streaming services by: 1) use of fuzzy similarity metric, 2) minimization of packet loss due to buffer overflow and resource waste, and 3) minimization of packet loss due to congestion and delay. The simulation result shows that the proposed method has better performance in congestion control and packet loss ratio than the other existing methods of TCP-based method, UDP-based method and VBM-based method. The proposed method showed improvement of 10% in congestion control ratio and 8% in packet loss ratio compared with VBM-based method which is one of the best method.