• Title/Summary/Keyword: Mobile Robotics

Search Result 1,114, Processing Time 0.033 seconds

Supervised Hybrid Control Architecture for Navigation of a Personal Robot

  • Shin, Hyun-Jong;Im, Chang-Jun;Kim, Jin-Oh;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1178-1183
    • /
    • 2003
  • As personal robots coexist with a person with a role to help a person, while adapting various human life and environment, the personal robots have to accommodate frequently-changing or different-from-home-to-home environment. In addition, personal robots may have many kinds of different Kinematic configurations depending on the capabilities. Some may have a mobile base and others may have arms and a head. The motivation of this study arises from this not-well-defined home environment and varying Kinematic configuration. So the goal of this study is to develop a general control architecture for personal robots. There exist three major architectures; deliberative, reactive and hybrid. We found that these are applicable only for the defined environment with a fixed Kinematic configuration. Neither could accommodate the above two requirements. For the general solution, we propose a Supervised Hybrid Architecture (SHA), in which we use double layers of deliberative and reactive controls, distributed control with a modular design of Kinematic configurations, and real-time Linux OS. Deliberative and reactive actions interact through a corresponding arbitrator. These arbitrators help a robot to choose an appropriate architecture depending on the current situation to successfully perform a given task. The distributed control modules communicate through IEEE 1394 for the easy expandability. With a personal robot platform with a mobile base, two arms, a head and a pan-tilt stereo eye system, we tested the developed SHA for static as well as dynamic environments. For this application, we developed decision-making rules for selecting appropriate control methods for several situations of navigation task. Examples are shown to show the effectiveness.

  • PDF

Simultaneous and Multi-frequency Driving System of Ultrasonic Sensor Array for Object Recognition

  • Park, S.C.;Choi, B.J.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.582-587
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. However, the recognition of objects using a ultrasonic sensor is not so easy due to its characteristics such as narrow beam width and no reflected signal from a inclined object. As one of the alternatives to resolve these problems, use of multiple sensors has been studied. A sequential driving system needs a long measurement time and does not take advantage of multiple sensors. Simultaneous and pulse coding driving system of ultrasonic sensor array cannot measure short distance as the length of the code becomes long. This problem can be resolved by multi-frequency driving of ultrasonic sensors, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a simultaneous and multi-frequency driving system for an ultrasonic sensor array for object recognition. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the multi-frequency signals, and a 5-channel frequency modulated signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from filtering of the received overlapping signals and calculation of the time-of-flights.

  • PDF

Reduction in Sample Size Using Topological Information for Monte Carlo Localization

  • Yang, Ju-Ho;Song, Jae-Bok;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.901-905
    • /
    • 2005
  • Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Much research has been done to improve performance of MCL so far. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of the MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated off- line using a thinning method, which is commonly used in image processing, is employed. The topological map is first created from the given grid map for the environment. The robot scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be the same as the one obtained off- line from the given grid map. Random samples are drawn near the off-line topological edge instead of being taken with uniform distribution, since the robot traverses along the edge. In this way, the sample size required for MCL can be drastically reduced, thus leading to reduced initial operation time. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased.

  • PDF

Increasing the SLAM performance by integrating the grid-topology based hybrid map and the adaptive control method (격자위상혼합지도방식과 적응제어 알고리즘을 이용한 SLAM 성능 향상)

  • Kim, Soo-Hyun;Yang, Tae-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1605-1614
    • /
    • 2009
  • The technique of simultaneous localization and mapping is the most important research topic in mobile robotics. In the process of building a map in its available memory, the robot memorizes environmental information on the plane of grid or topology. Several approaches about this technique have been presented so far, but most of them use mapping technique as either grid-based map or topology-based map. In this paper we propose a frame of solving the SLAM problem of linking map covering, map building, localizing, path finding and obstacle avoiding in an automatic way. Some algorithms integrating grid and topology map are considered and this make the SLAM performance faster and more stable. The proposed scheme uses an occupancy grid map in representing the environment and then formulate topological information in path finding by A${\ast}$ algorithm. The mapping process is shown and the shortest path is decided on grid based map. Then topological information such as direction, distance is calculated on simulator program then transmitted to robot hardware devices. The localization process and the dynamic obstacle avoidance can be accomplished by topological information on grid map. While mapping and moving, pose of the robot is adjusted for correct localization by implementing additional pixel based image layer and tracking some features. A laser range finer and electronic compass systems are implemented on the mobile robot and DC geared motor wheels are individually controlled by the adaptive PD control method. Simulations and experimental results show its performance and efficiency of the proposed scheme are increased.

3D Image Scan Automation Planning based on Mobile Rover (이동식 로버 기반 스캔 자동화 계획에 대한 연구)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.1-7
    • /
    • 2019
  • When using conventional 3D image scanning methods, it is common for image scanning to be done manually, which is labor-intensive. Scanning a space made up of complicated equipment or scanning a narrow space that is difficult for the user to enter, is problematic, resulting in quality degradation due to the presence of shadow areas. This paper proposes a method to scan an image using a rover equipped with a scanner in areas where it is difficult for a person to enter. To control the scan path precisely, the 3D image remote scan automation method based on the rover move rule definition is described. Through the study, the user can automate the 3D scan plan in a desired manner by defining the rover scan path as the rule base.

A Motivation-Based Action-Selection-Mechanism Involving Reinforcement Learning

  • Lee, Sang-Hoon;Suh, Il-Hong;Kwon, Woo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.904-914
    • /
    • 2008
  • An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.

Role of linking parameters in Pulse-Coupled Neural Network for face detection

  • Lim, Young-Wan;Na, Jin-Hee;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1048-1052
    • /
    • 2004
  • In this work, we have investigated a role of linking parameter in Pulse-Coupled Neural Network(PCNN) which is suggested to explain the synchronous activities among neurons in the cat cortex. Then we have found a method to determine the linking parameter for a satisfactory face detection performance in a given color image. Face detection algorithm which uses the color information is independent on pose, size and obstruction of a face. But the use of color information encounters some problems arising from skin-tone color in the background, intensity variation within faces, and presence of random noise and so on. Depending on these conditions, PCNN's linking parameters should be selected an appropriate values. First we obtained the mean and variance of the skin-tone colors by experiments. Then, we introduced a preprocess that the pixel with a mean value of skin-tone colors has the highest level value (255) and the other pixels have values between 0 and 255 according to normal distribution with a variance. This preprocessing leads to an easy decision of the linking parameter of the Pulse-Coupled Neural Network. Through experiments, it is verified that the proposed method can improve the face detection performance compared to the existing methods.

  • PDF

Target Detection Based on Moment Invariants

  • Wang, Jiwu;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.677-680
    • /
    • 2003
  • Perceptual landmarks are an effective solution for a mobile robot realizing steady and reliable long distance navigation. But the prerequisite is those landmarks must be detected and recognized robustly at a higher speed under various lighting conditions. This made image processing more complicated so that its speed and reliability can not be both satisfied at the same time. Color based target detection technique can separate target color regions from non-target color regions in an image with a faster speed, and better results were obtained only under good lighting conditions. Moreover, in the case that there are other things with a target color, we have to consider other target features to tell apart the target from them. Such thing always happens when we detect a target with its single character. On the other hand, we can generally search for only one target for each time so that we can not make use of landmarks efficiently, especially when we want to make more landmarks work together. In this paper, by making use of the moment invariants of each landmark, we can not only search specified target from separated color region but also find multi-target at the same time if necessary. This made the finite landmarks carry on more functions. Because moment invariants were easily used with some low level image processing techniques, such as color based target detection and gradient runs based target detection etc, and moment invariants are more reliable features of each target, the ratio of target detection were improved. Some necessary experiments were carried on to verify its robustness and efficiency of this method.

  • PDF

A Wireless Glove-Based Input Device for Wearable Computers

  • An, Sang-Sup;Park, Kwang-Hyun;Kim, Tae-Hee;Jeon, Jae-Wook;Lee, Sung-Il;Choi, Hyuck-Yeol;Choi, Hoo-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1633-1637
    • /
    • 2003
  • Existing input devices for desktop computers are not suitable for wearable computers because they are neither easy to carry nor convenient to use in a mobile working environment. Different input devices for wearable computers must be developed. In this paper, a wireless glove-based input device for wearable computers is proposed. The proposed input device consists of a pair of chording gloves. Its keys are mounted on the fingers and their chording methods are similar to those of a Braille keyboard. RF (Radio Frequency) and IrDA (Infrared Data Association) modules are used to make the proposed input device wireless. Since the Braille representation for numbers and characters is efficient and has been well established for many languages in the world, the proposed input device may be one of good input devices to computers. Furthermore, since the Braille has been used for visually impaired people, the proposed one can be easily used as an input device to computers for them.

  • PDF

Development of the Medical Support Service Robot Using Ergonomic Design

  • Cho, Young-Chul;Jang, Jae-Ho;Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2660-2664
    • /
    • 2003
  • In this study, the concept of autonomous mobility is applied to a medical service robot. The aim of the development of the service robot is for the elderly assisting walking rehabilitation. This study aims that the service robot design parameter is proposed in ergonomic view. The walking assistant path pattern is derived from analyzing the elderly gait analysis. A lever is installed in the AMR in order to measure the pulling force and the leading force of the elderly. A lever mechanism is applied for walking assistant service of the AMR. This lever is designed for measuring the leading force of the elderly. The elderly adjusts the velocity of the robot by applying force to the lever. The action scope and the service mechanism of the robot are developed for considering and analyzing the elderly action patterns. The ergonomic design parameters, that is, dimensions, action scope and working space are determined based on the elderly moving scope. The gait information is acquired by measuring the guide lever force by load cells and working pattern by the electromyography signal.

  • PDF