• Title/Summary/Keyword: Mobile Robot Navigation

Search Result 562, Processing Time 0.021 seconds

Optimal Path planning and navigation for an autonomous mobile robot

  • Lee, Jang-Gyu-;Hakyoung-Chung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1258-1261
    • /
    • 1993
  • This paper presents a methodology of path planning and navigation for an autonomous mobile robot. A fast algorithm using decomposition technique, which computes the optimal paths between all pairs of nodes, is proposed for real-time calculation. The robot is controlled by fuzzy approximation reasoning. Our new methodology has been implemented on a mobile robot. The results show that the robot successfully navigates to its destination following the optimal path.

  • PDF

Sensor System for Autonomous Mobile Robot Capable of Floor-to-floor Self-navigation by Taking On/off an Elevator (엘리베이터를 통한 층간 이동이 가능한 실내 자율주행 로봇용 센서 시스템)

  • Min-ho Lee;Kun-woo Na;Seungoh Han
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.118-123
    • /
    • 2023
  • This study presents sensor system for autonomous mobile robot capable of floor-to-floor self-navigation. The robot was modified using the Turtlebot3 hardware platform and ROS2 (robot operating system 2). The robot utilized the Navigation2 package to estimate and calibrate the moving path acquiring a map with SLAM (simultaneous localization and mapping). For elevator boarding, ultrasonic sensor data and threshold distance are compared to determine whether the elevator door is open. The current floor information of the elevator is determined using image processing results of the ceiling-fixed camera capturing the elevator LCD (liquid crystal display)/LED (light emitting diode). To realize seamless communication at any spot in the building, the LoRa (long-range) communication module was installed on the self-navigating autonomous mobile robot to support the robot in deciding if the elevator door is open, when to get off the elevator, and how to reach at the destination.

Path planning for mobile robot using genetic algorithm (유전 알고리즘을 이용한 이동로봇의 경로 계획)

  • 곽한택;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1189-1192
    • /
    • 1996
  • Navigation is a science of directing a mobile robot as traversing the environment. The purpose of navigation is to reach a destination without getting lost or crashing into any obstacles. In this paper, we use a genetic algorithm for navigation. Genetic algorithm searches for path in the entire, continuous free space and unifies global path planning and local path planning. It is the efficient and effective method when compared with navigators using traditional approaches.

  • PDF

Fuzzy Cntrol for Otimal Navigation of A Mobile Robot

  • Hwang, Hee-Soo;Joo, Young-Hoon;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.473-478
    • /
    • 1992
  • This paper aims to investigate the navigation control of a mobile robot in a confined environment. Steering angle becomes control variable which is computed from the fuzzy control rules. The identification method proposed in this paper presents the fuzzy control rules obtained through modelling of. the driving actions of human operator. The feasibility of the proposed method is evaluated through the application of the identified fuzzy controls rules to the navigation control of a mobile robot which follows the center of a corridor.

  • PDF

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Mobile Robot Destination Generation by Tracking a Remote Controller Using a Vision-aided Inertial Navigation Algorithm

  • Dang, Quoc Khanh;Suh, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.613-620
    • /
    • 2013
  • A new remote control algorithm for a mobile robot is proposed, where a remote controller consists of a camera and inertial sensors. Initially the relative position and orientation of a robot is estimated by capturing four circle landmarks on the plate of the robot. When the remote controller moves to point to the destination, the camera pointing trajectory is estimated using an inertial navigation algorithm. The destination is transmitted wirelessly to the robot and then the robot is controlled to move to the destination. A quick movement of the remote controller is possible since the destination is estimated using inertial sensors. Also unlike the vision only control, the robot can be out of camera's range of view.

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.

Mobile Robot Navigation For Recovering Local Minimum Using Ultrasonic Sensor (초음파센서를 이용한 이동 로봇의 지역 최소 회복을 위한 주행 알고리즘)

  • Myung, Ki-Ho;Yang, Dong-Hoon;Yoo, Young-Dong;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3086-3088
    • /
    • 1999
  • An ultrasonic sensor is one of most popular sensor used to navigate mobile robots within environments containing obstacles. But many navigation algorithm have studied because of the drawback of ultrasonic sensor such that poor directionality, frequent misreadings, specular reflections. Also, the most crucial drawback of this algorithm, that is VFF, VFM, EDM, PFM, WFM, GFM etc. has been that the mobile robot may become trapped in a local minimum. In this paper, we present a theoretical study of a navigation algorithm which integrals a heuristic-search local minimum (or trap) recovery method with a vector-field based method to maneuver cylindric mobile robots in unknown of unstructured environments. Also, an autonomous mobile robot uses dead-reckoning to estimate the current position and orientation of a mobile robot.

  • PDF

Touch-based Moving Trajectory Generation and Data Acquisition of a Mobile Robot using a Smart Phone (스마트폰을 이용한 이동로봇의 터치기반 주행궤적 생성 및 데이터 획득)

  • Jung, Hyo-Young;Lee, Chung-Sub;Seo, Yong-Ho;Yang, Tae-Kyu
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.3
    • /
    • pp.98-102
    • /
    • 2011
  • This paper proposes a method of a touch-based remote control and sensor information acquisition of a mobile robot using a smart phone. An application in a smart phone processes the acquired sensor information and conducts autonomous navigation. By touching the screen of the smart phone, a series of points obtained from designated curve traces are analyzed and provide control of a robot. This study develops a mobile application that acquires and handles data from a mobile robot and sends appropriate action commands through remote control using Bluetooth communication with a smart phone. The utility and performance of the proposed control scheme have been successfully verified through experimental tasks using an actual smart phone and a mobile robot.

  • PDF

Development of an Autonomous Mobile Robot with the Function of Teaching a Moving Path by Speech and Avoiding a Collision (음성에 의한 경로교시 기능과 충돌회피 기능을 갖춘 자율이동로봇의 개발)

  • Park, Min-Gyu;Lee, Min-Cheol;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.189-197
    • /
    • 2000
  • This paper addresses that the autonomous mobile robot with the function of teaching a moving path by speech and avoiding a collision is developed. The use of human speech as the teaching method provides more convenient user-interface for a mobile robot. In speech recognition system a speech recognition algorithm using neural is proposed to recognize Korean syllable. For the safe navigation the autonomous mobile robot needs abilities to recognize a surrounding environment and to avoid collision with obstacles. To obtain the distance from the mobile robot to the various obstacles in surrounding environment ultrasonic sensors is used. By the navigation algorithm the robot forecasts the collision possibility with obstacles and modifies a moving path if it detects a dangerous obstacle.

  • PDF