• Title/Summary/Keyword: Mobile Maps

Search Result 155, Processing Time 0.027 seconds

Microstructure analysis of 8 ㎛ electrolytic Cu foil in plane view using EBSD and TEM

  • Myeongjin Kim;Hyun Soon Park
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.2.1-2.6
    • /
    • 2022
  • With the lightening of the mobile devices, thinning of electrolytic copper foil, which is mainly used as an anode collection of lithium secondary batteries, is needed. As the copper foil becomes ultrathin, mechanical properties such as deterioration of elongation rate and tear phenomenon are occurring, which is closely related to microstructure. However, there is a problem that it is not easy to prepare and observe specimens in the analysis of the microstructure of ultrathin copper foil. In this study, electron backscatter diffraction (EBSD) specimens were fabricated using only mechanical polishing to analyze the microstructure of 8 ㎛ thick electrolytic copper foil in plane view. In addition, EBSD maps and transmission electron microscopy (TEM) images were compared and analyzed to find the optimal cleanup technique for properly correcting errors in EBSD maps.

Estimating Indoor Radio Environment Maps with Mobile Robots and Machine Learning

  • Taewoong Hwang;Mario R. Camana Acosta;Carla E. Garcia Moreta;Insoo Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2023
  • Wireless communication technology is becoming increasingly prevalent in smart factories, but the rise in the number of wireless devices can lead to interference in the ISM band and obstacles like metal blocks within the factory can weaken communication signals, creating radio shadow areas that impede information exchange. Consequently, accurately determining the radio communication coverage range is crucial. To address this issue, a Radio Environment Map (REM) can be used to provide information about the radio environment in a specific area. In this paper, a technique for estimating an indoor REM usinga mobile robot and machine learning methods is introduced. The mobile robot first collects and processes data, including the Received Signal Strength Indicator (RSSI) and location estimation. This data is then used to implement the REM through machine learning regression algorithms such as Extra Tree Regressor, Random Forest Regressor, and Decision Tree Regressor. Furthermore, the numerical and visual performance of REM for each model can be assessed in terms of R2 and Root Mean Square Error (RMSE).

Automatic Construction of Deep Learning Training Data for High-Definition Road Maps Using Mobile Mapping System (정밀도로지도 제작을 위한 모바일매핑시스템 기반 딥러닝 학습데이터의 자동 구축)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Currently, the process of constructing a high-definition road map has a high proportion of manual labor, so there are limitations in construction time and cost. Research to automate map production with high-definition road maps using artificial intelligence is being actively conducted, but since the construction of training data for the map construction is also done manually, there is a need to automatically build training data. Therefore, in this study, after converting to images using point clouds acquired by a mobile mapping system, the road marking areas were extracted through image reclassification and overlap analysis using thresholds. Then, a methodology was proposed to automatically construct training data for deep learning data for the high-definition road map through the classification of the polygon types in the extracted regions. As a result of training 2,764 lane data constructed through the proposed methodology on a deep learning-based PointNet model, the training accuracy was 99.977%, and as a result of predicting the lanes of three color types using the trained model, the accuracy was 99.566%. Therefore, it was found that the methodology proposed in this study can efficiently produce training data for high-definition road maps, and it is believed that the map production process of road markings can also be automated.

Avoidance obstacles using A* algorithm in the Eyebot (A*를 이용한 장애물 회피)

  • 정현룡;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.468-471
    • /
    • 2003
  • The A* algorithm is usually used in game programming, mainly because it is fast in finding a optimal path to goal. In this paper. This algorithm was utilized for path finding, HIMM(Histogramic In-Motion Mapping) method is used in map-building. Map is updated continuously with range data sampled by PSD sensors From the map, A* algorithm finds a optimal path and sends subsequently the most suitable point to the Eyebot. A* algorithm has been tested on the Eyebot in various unknown maps of unknown and proved to work well. It could escape the local minimum, also.

  • PDF

Research Trends and Case Study on Keypoint Recognition and Tracking for Augmented Reality in Mobile Devices (모바일 증강현실을 위한 특징점 인식, 추적 기술 및 사례 연구)

  • Choi, Heeseung;Ahn, Sang Chul;Kim, Ig-Jae
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.45-55
    • /
    • 2015
  • In recent years, keypoint recognition and tracking technologies are considered as crucial task in many practical systems for markerless augmented reality. The keypoint recognition and technologies are widely studied in many research areas, including computer vision, robot navigation, human computer interaction, and etc. Moreover, due to the rapid growth of mobile market related to augmented reality applications, several effective keypoint-based matching and tracking methods have been introduced by considering mobile embedded systems. Therefore, in this paper, we extensively analyze the recent research trends on keypoint-based recognition and tracking with several core components: keypoint detection, description, matching, and tracking. Then, we also present one of our research related to mobile augmented reality, named mobile tour guide system, by real-time recognition and tracking of tour maps on mobile devices.

Robust Map Building in Narrow Environments based on Combination of Sonar and IR Sensors (좁은 환경에서 초음파 및 적외선 센서를 융합한 강인한 지도작성)

  • Han, Hye-Min;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • It is very important for a mobile robot to recognize and model its environments for navigation. However, the grid map constructed by sonar sensors cannot accurately represent the environment, especially the narrow environment, due to the angular uncertainty of sonar data. Therefore, we propose a map building scheme which combines sonar sensors and IR sensors. The maps built by sonar sensors and IR sensors are combined with different weights which are determined by the degree of translational and rotational motion of a robot. To increase the effectiveness of sensor fusion, we also propose optimal sensor arrangement through various experiments. The experimental results show that the proposed method can represent the environment such as narrow corridor and open door more accurately than conventional sonar sensor-based map building methods.

Topological Map Building for Mobile Robot Navigation (이동로봇의 주행을 위한 토폴로지컬 지도의 작성)

  • 최창혁;이진선;송재복;정우진;김문상;박성기;최종석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.492-497
    • /
    • 2002
  • Map building is the process of modeling the robot's environment. The map is usually built based on a grid-based or topological approach, which has its own merits and demerits. These two methods, therefore, can be integrated to provide a better way of map building, which compensates for each other's drawbacks. In this paper, a method of building the topological map based on the occupancy grid map through a Voronoi diagram is presented and verified by various simulations. This Voronoi diagram is made by using a labeled Voronoi diagram scheme which is suitable for the occupancy grid maps. It is shown that the Proposed method is efficient and simple fur building a topological map. The simple path-planning problem is simulated and experimented verify validity of the proposed approach.

Robust Speech Decoding Using Channel-Adaptive Parameter Estimation.

  • Lee, Yun-Keun;Lee, Hwang-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.3-6
    • /
    • 1999
  • In digital mobile communication system, the transmission errors affect the quality of output speech seriously. There are many error concealment techniques using a posteriori probability which provides information about any transmitted parameter. They need knowledge about channel transition probability as well as the 1st order Markov transition probability of codec parameters for estimation of transmitted parameters. However, in applications of mobile communication systems, the channel transition probability varies depending on nonstationary channel characteristics. The mismatch of designed channel transition probability of the estimator to actual channel transition probability degrades the performance of the estimator. In this paper, we proposed a new parameter estimator which adapts to the channel characteristics using short time average of maximum a posteriori probabilities(MAPs). The proposed scheme, when applied to the LSP parameter estimation, performed better than the conventional estimator which do not adapt to the channel characteristics.

  • PDF

An Efficient Representation of Edge Shapes in Topological Maps

  • Doh, Nakju Lett;Chung, Wan-Kyun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.655-666
    • /
    • 2007
  • There are nodes and edges in a topological map. Node data has been used as a main source of information for the localization of mobile robots. In contrast, edge data is regarded as a minor source of information, and it has been used in an intuitive and heuristic way. However, edge data also can be used as a good source of information and provide a way to use edge data efficiently. For that purpose, we define a data format which describes the shape of an edge. This format is called local generalized Voronoi graph's angle (LGA). However, the LGA is constituted of too many samples; therefore, real time localization cannot be performed. To reduce the number of samples, we propose a compression method which utilizes wavelet transformation. This method abstracts the LGA by key factors using far fewer samples than the LGA. Experiments show that the LGA accurately describes the shape of the edges and that the key factors preserve most information of the LGA while reducing the number of samples.

  • PDF

Reduction of Inter-MAP Handoff Rate Based on 2-Layers in Hierarchical Mobile IPv6 (계층적 모바일 IP 네트워크에서 2 계층에 기반한 Inter-MAP Handoff Rate의 감소기법)

  • Jeong, Jong-Pil;Chung, Min-Young;Choo, Hyun-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.999-1002
    • /
    • 2008
  • Many schemes to reduce the inter-MAP handoff delay in hierarchical mobile IPv6 have been proposed but the previous schemes waste relatively large network resources to decrease the path rerouting delay. In this paper, we propose the 2-layered MAP concept, where the seamless inter-MAP handoff can be supported regardless of path rerouting time. As a result, the waste of wired resources and the rate of the inter-MAP handoff can be reduced. From the performance analysis and simulation, the inter-MAP handoff rate for non-real-time traffic is only about 1/3 of the conventional result. Such advantageous features of the proposed scheme neither incur any increase of the total handoff rate nor require additional MAPs.