• Title/Summary/Keyword: Mobile Camera Module

Search Result 118, Processing Time 0.031 seconds

The Obstacle Avoidance and Path Planning Algorithm for Self Controlled Mobile Robot Using Image Information (영상정보를 이용한 자율 이동 로봇의 장애물 회피 및 경로계획에 대한 알고리즘)

  • 구본민;최중경;류한성;박무열;윤석영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.161-164
    • /
    • 2001
  • In this paper, we has been studied self controlled mobile robot system with CCD camera. This system consists of TMS320F240 digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitging between robot and host PC. This robot go straight until 95 percent filled screen from input image. And the robot recognizes obstacle about 95 percent filled something, so it could avoid the obstacle and conclude new path plan.

  • PDF

Development of the inspection system for injection molding core and mobile camera module parts (카메라 모듈 부품 및 금형 코어 측정 시스템 개발)

  • Shin, Bong-Cheol;Kim, Gun-Hee;Kim, Jae-Cheol;Cho, Meyong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2009
  • In this paper, for reducing the assembly torque of subminiature plastic barrel and base which are the essential parts of mobile phone camera module, the high-precision system for inspecting the screw shape of core, electrode and injection molding products was developed. For realization of inspection process, the inspection parameters for evaluating the manufacturing quality were selected and the measurement methods of selected parameters were developed. Finally, the inspection system which is possible to be applied to the field were fabricated.

Development of Automatic Visual Inspection for the Defect of Compact Camera Module

  • Ko, Kuk-Won;Lee, Yu-Jin;Choi, Byung-Wook;Kim, Johng-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2414-2417
    • /
    • 2005
  • Compact Camera Module(CCM) is widely used in PDA, Celluar phone and PC web camera. With the greatly increasing use for mobile applications, there has been a considerable demands for high speed production of CCM. The major burden of production of CCM is assembly of lens module onto CCD or CMOS packaged circuit board. After module is assembled, the CCM is inspected. In this paper, we developed the image capture board for CCM and the imaging processing algorithm to inspect the defects in captured image of assembled CCMs. The performances of the developed inspection system and its algorithm are tested on samples of 10000 CCMs. Experimental results reveal that the proposed system can focus the lens of CCM within 5s and we can recognize various types of defect of CCM modules with good accuracy and high speed.

  • PDF

A Study on Characteristics of Smart Phone Camera Module for Measuring a Shooting Object (피사체 계측을 위한 스마트 폰 카메라 모듈 특성 연구)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.99-105
    • /
    • 2012
  • With the rapid development and diffusion of smart phone applications, mobile users are able to use various useful mobile services in humdrum life. Especially, interesting applications like QR code using camera module in a smart phone are developed continuously nowadays. We realized that the size and shape of shooting objects taken by a smart phone camera module are very different according to their types and versions of the android-based smart phone in the process of developing applications for measuring the shooting object using camera module of a smart phone. In this paper, we investigate the major differences among smart phone types and system versions when we take specific object with camera module of smart phones, analyze the various characteristics of camera modules that influencing the real size of the shooting object taken by a smart phone, and apply them to the development of the smart camruler application.

Design and Development of Sprinkler Control System Utilizing Mobile with IoT

  • Kang, Tae-Sun;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.212-217
    • /
    • 2020
  • We studied on the design of a sprinkler control system that communicates with the administrator's mobile through a wireless communication network and a sprinkler unit that sprays water on the vegetation area. This sprinkler control system consists of a communication module that receives an operation signal for the operation of the sprinkler unit from the administrator's mobile, and a control module that controls the sprinkler unit according to the operation signal received through the communication module. It is also designed to control sprinkler units by measuring temperature, humidity, light intensities, vibration and field images in the vegetation area in real time through sensors and camera for each of them and comparing them with established limit criteria. The sprinkler allows the administrator to control the sprinkler more easily because the administrator operates the sprinkler through the mobile from a distance, and emergency situations occur and can respond quickly.

Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation (천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.

Improvement of Assembly Characteristics of a Lens Module in a Mobile Phone Camera using Finite Element Analysis (유한요소해석을 사용한 휴대폰 카메라용 렌즈모듈의 결합특성 개선)

  • Moon, Yang-Ho;Moon, Jae-Ho;Lyu, Min-Young;Park, Keun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • The present study covers the optimal design for a lens module in a mobile phone camera by using the design of experiments (DOE) and finite element (FE) analysis. FE analyses are performed to investigate the effect of design parameters on the amount of torque required to assemble a barrel and a housing part. The DOE approach is then performed to optimize the design parameters in order to maintain an appropriate torque with less variations.

Design of a Slim-Type Auto-Focusing Module with a Cam Structure (캠 구조를 가지는 초소형 자동초점 모듈 설계)

  • Kim, Kyung-Ho;Lee, Seung-Yop;Shin, Bu-Hyun;Kim, Soo-Kyung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Recently, the growing market demand for small and slim mobile phone cameras requires the size reduction of the camera module. In this paper, an auto-focusing actuator for camera phones is proposed by converting the rotational motion by a rotary VCM actuator into the linear motion using a novel cam structure. This new concept for auto-focusing module enables the reduction of the module thickness and low power consumption. This paper presents the theoretical analysis and optimal design for VCM actuator, cam structure and preload spring. Finally, the experimental results using a prototype with the size of $9.9{\times}9.9{\times}5.9\;mm^3$ are compared with the theoretical predictions.

  • PDF

A Study of Auto Focus Control Method for the Mobile Phone Camera (이동단말기 카메라 자동 초점 조절 방식에 관한 연구)

  • Kim, Gab-Yong;Kim, Young-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1003-1006
    • /
    • 2005
  • Demand of Auto Focus for Camera module is increased very fast in these days and will be adapted to most of mobile phones in next few years instead of traditional method, fixed focus. To make auto focus function, 2 kinds of solutions, VCM(Voice Coil Motor) and Piezo linear motor are normally used. In this paper, VCM which commercially strong candidate for Auto focus mechanism was investigated to verify principles are match up to the actual operation. Auto focus algorithm is different between 1 chip and 2 chip solution. Normally 2 chip is more complicate than the other. To have best performance on this function, hysteresis and depth of field(DOF) table should be optimized.

  • PDF

Camera Imaging Lens Fabrication using Wafer-Scale UV Embossing Process

  • Jeong, Ho-Seop;Kim, Sung-Hwa;Shin, Dong-Ik;Lee, Seok-Cheon;Jin, Young-Su;Noh, Jung-Eun;Oh, Hye-Ran;Lee, Ki-Un;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.124-129
    • /
    • 2006
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale-replica processing. A multiple-layered structure of several aspheric lenses in a mobile-phone camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. This wafer-scale processing leads to at least 95% yield in mass-production, and potentially to a very slim phone with camera-module less than 2 mm in thickness. We have demonstrated a VGA camera module fabricated by the wafer-scale-replica processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having $230{\mu}m$ sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in orderto achieve a higher resolution in wafer-scaled lenses for mobile-phone camera modules.