• Title/Summary/Keyword: MoSi

Search Result 934, Processing Time 0.026 seconds

Effect of Milling Medium Materials on Mechanical Alloying of Mo-25.0at%Si Powder Mixture (Mo-25.0at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향)

  • 박상보
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 1998
  • Milling media of steel and partially stabilized zirconia(PSZ) were used to produce $Mo_3$Si by mechanical alloying(MA) of Mo-25.0at%Si elemental powder mixture. The effect of milling medium materials on MA of the powder mixture have been investigated by XRD and DTA. The reaction rate and the end-product noticeably depended upon the milling medium material. The formation of $Mo_3$Si and $Mo_5Si_3$phases by PSZ ball-milling took place after 15 hr of MA and was characterized by a slow reaction rate as Mo, Si, $Mo_5Si_3$ and $Mo_3$Si coexisted for a long period of milling time. The formation of a new phase by steel ball-milling, however, did not take Place even after 96 hr of MA. DTA and annealing results showed that $Mo_5Si_3$ and $Mo_3$Si were formed after heating the ball-milled powder specimens to different temperatures. At low temperatures, Mo and Si were transformed into $Mo_5Si_3$. At high temperatures, the formation of $Mo_3$Si can be partially attributed to the reaction, 7Mo+Si+$Mo_5Si_3$-.4$Mo_3$Si . The formation of $Mo_3$Si and Mo5Si3 phases by mechanical alloying of the powder mixture and the relevant reaction rate appeared to depend upon the milling medium material as well as the thermodynamic properties of the end-products.

  • PDF

Effect of Milling Medium Materials on Mechanical Alloying of Mo-65.8at%Si Powder Mixture (Mo-65.8at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향)

  • 박상보
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.179-187
    • /
    • 1997
  • Milling media of steel and zirconia were used to produce $MoSi_2$ by mechanical alloying (MA) of Mo and Si powders. The effect of milling media on MA of Mo-65.8at%Si powder mixture has been investigated by SEM, XRD, DTh and in-situ thermal analysis. The powders mechanically alloyed by milling medium of steel for 8 hours showed the structure of fine mixture of Mo and Si, and those mechanically alloyed by milling medium of zirconia for longer milling time showed the structure of fine mixture of Mo and Si. The tetragonal $\alpha$-$MoSi_2$ Phase and the tetragonal $Mo_5Si_3$ phase appeared with small Mo peaks in the powders milled by milling medium of steel for 4 and 8 hours. The $\alpha$-$MoSi_2$ phase and the hexagonal $\beta$-$MoSi_2$ phase were formed after longer milling time. The $\alpha$-$MoSi_2$ phase appeared with large Mo peaks in the powders milled by milling medium of zirconia for 4 hours. The phases, $\alpha$-$MoSi_2$ and $\beta$-$MoSi_2$. were formed in the powders milled for longer milling time. DTA and annealing results showed that Mo and Si were transformed into $\alpha$-$MoSi_2$ and $Mo_5Si_3$, while $\beta$-$MoSi_2$ into $\alpha$-$MoSi_2$. In-situ thermal analysis results demonstrated that there were a sudden temperature rise at 212 min and a gradual increase in temperature in case of milling media of steel and zirconia, respectively. The results indicate that MA can be influenced by materials of milling medium which can give either impact energy on powders or thermal energy accumulated in vial.

  • PDF

Study on Sliding Wear Characteristics and Processing of MoSi

  • Park, Sungho;Park, Wonjo;Huh, Sunchul
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-249
    • /
    • 2012
  • In this study, a monolithic MoSi2 matrix reinforced with 20 vol% SiC particles, a SiC/MoSi2 composite matrix reinforced with 20 vol% ZrO2 particles, and a ZrO2/MoSi2 composite were fabricated using hot press sintering at $1350^{\circ}C$ for 1 h under a pressure of 30 MPa. The Vickers hardness and sliding wear resistance of the monolithic MoSi2, ZrO2/MoSi2, and SiC/MoSi2 composite were investigated at room temperature. A wear behavior test was carried out using a disk-type wear tester with a silicon nitride ball. The ZrO2/MoSi2 composite showed an average Vickers hardness value and excellent wear resistance compared with the monolithic MoSi2 and SiC/MoSi2 composite at room temperature.

Synthesis and Sinteirng of $MoSi_2$ by SHS Process (SHS법에 의한 고온발열체용 $MoSi_2$의 합성 및 소결)

  • 이승재;장윤식;김인술;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1085-1091
    • /
    • 1995
  • Molybdenum disilicide (MoSi2) was synthesized from Mo, MoO3, Si and Al powders by self-propagating high temperature synthesis (SHS). The effect of processing parameters such as Mo/MoO3 molar ratio, Ar gas pressure in the reactor and pressing pressure of compacts in synthesis of MoSi2 were investigated. h-MoSi2 was transformed into t-MoSi2 with increasing the Mo/MoO3 mole ratio, and only t-MoSi2 phase was identified above 3.5 : 1 (molar ratio). The synthesized phases did not change with the variation of Ar gas pressure and pressing pressure of compacts. It was found that the combustion temperature was above 2,50$0^{\circ}C$. The products were separated into MoSi2 (s) and $\alpha$-Al2O3 by the difference of their specific grativities. Bending strength, hardness and density of sintered specimen exhibited 82 MPa, 5.368 GPa and 5.43 g/㎤, respectively.

  • PDF

Influences of the Molar Ratio of $Mo/MoO_3$ on Characteristics of $MoSi_2-Al_2O_3$ composites by SHS Methods (연소합성법에 의한 $MoSi_2-Al_2O_3$ 복합재료의 특성에 미치는 $Mo/MoO_3$ 몰비의 영향)

  • 장윤식;이윤복;김용백;김인술;박흥채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1209-1216
    • /
    • 1996
  • MoSi2-Al2O3 composites were prepared by thermal explosion mode of self-propagating high temperature syn-thesis (SHS) using element powders of MoO3 Mo Si and Al. The combustion products of MoSi2 which have 10, 20, 30 and 40 wt% Al2O3 showed the molten state in the range of Mo to MoO3 6:1-9.5:1, 2:1-8:1, 1:1-5:1, and 1:1-3:1 (molar ratio) respectively. The combustion products which made least seperation the molten phase from the slag phase were in Mo/MoO3=9, 5:1, 8:1, 5:1 and 3:1 (molar ratio) respectively. Particles size of MoSi2 and Al2O3 in the combustion product were decreased as the molar ratio of Mo to MoO3 increase. By XRD analysis only MoSi2 and $\alpha$-Al2O3 peaks were identified in the combusion products, In case of MoSi2 containing 20wt% Al2O3 5.1wt% Al existed into MoSi2 grains and 30.7wt% Si and 7.7wt% Mo existed into Al2O3 grains. The relative density of MoSi2 containing 10, 20, 30 and 40 wt% Al2O3 were 82.7, 85.2, and 81.9% respectively. The fracture strength of MoSi2-Al2O3 composites increased with increasing Al2O3 and that of MoSi2-20wt% Al2O3 composite was 195 MPa.

  • PDF

The Effects of Si and Mo on the Structures and Mechanical Properties in High Si Spheroidal Graphite Cast Iron (고 Si 구상흑연주철의 조직과 기계적성질에 미치는 Si과 Mo의 영향)

  • Kim, Jong-Yeon;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.10 no.3
    • /
    • pp.225-234
    • /
    • 1990
  • Spheroidal graphite cast irons which are Fe-3%C-(4-6)%Si-(0-0.5)%Mo were studied to improve not only heat resistance but also mechanical properties. With increasing Mo content, the graphitization was decreased and carbide volume fraction was increased. The graphite spheroidization ratio was not decreased in Fe-3%C-6%Si-Mo system cast iron with increasing Mo content, but that was decreased in Fe-3%C-4%Si-Mo system and Fe-3%C-5%Si-Mo system cast irons. Hardness was increased with the Si and Mo contents. At constant Si content, tensile strength was increased with increasing Mo content, but that was decreased at 6%Si. In the experiment of oxidation, weight gain was decreased as the Si and/or Mo content increased, but increased at 1.5%Mo content.

  • PDF

Diffusion barrier properties of Mo compound thin films (Mo-화합물의 확산방지막으로서의 성질에 관한 연구)

  • 김지형;이용혁;권용성;염근영;송종한
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 1997
  • In this study, doffusion barrier properties of 1000 $\AA$ thick molybdenum compound(Mo, Mo-N, $MoSi_2$, Mo-Si-N) films were investigated using sheet resistance measurement, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron mircoscopy(SEM), and Rutherford back-scattering spectrometry(RBS). Each barrier material was deposited by the dc magnetron sputtering and annealed at 300-$800^{\circ}C$ for 30 min in vacuum. Mo and MoSi2 barrier were faied at low temperatures due to Cu diffusion through grain boundaries and defects in Mo thin film and the reaction of Cu with Si within $MoSi_2$, respectively. A failure temperature could be raised to $650^{\circ}C$-30 min in the Mo barrier system and to $700^{\circ}C$-30 min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the $N_2$, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It is found that Mo-Si-N is the more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetraion preventing Cu reaction with the substrate for $30^{\circ}C$min at a temperature higher than $650^{\circ}C$.

  • PDF

Synthesis and Characteristics of New Quaternary Superhard Ti-Mo-Si-N Coatings (새로운 고경도 Ti-Mo-Si-N 코팅막의 합성 및 기계적 특성)

  • Jeon, Jin-Woo;Hong, Seung-Gyun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.245-249
    • /
    • 2006
  • In this study, ternary Ti-Mo-N and new quaternary Ti-Mo-Si-N coatings were synthesized on steel substrates(AISI D2) and Si wafers by a hybrid coating system of arc ion plating (AIP) using Ti target and d.c. magnetron sputtering technique using Mo and Si targets in $N_2/Ar$ gaseous mixture. Ternary Ti-Mo-N coatings were substitutional solid-solution of (Ti, Mo)N and showed maximum hardness of approximately 30 GPa at the Mo content of ${\sim}10$. %. The Ti-Mo-Si-N coating with the Si content of 8.8 at. % was a composite consisting of fine (Ti, Mo)N crystallites and amorphous $Si_3N_4$ phase. The hardness of the Ti-Mo-Si(8.8 at. %)-N coatings exhibited largely increased hardness value of ${\sim}48$ GPa due to the microstructural evolution to the fine composite microstructure and the refinement of (Ti, Mo)N crystallites. The average friction coefficient of the Ti-Mo-Si-N coatings largely decreased with increase of Si content. The microstructures of Ti-Mo-Si-N coatings were investigated with instrumental analyses of XRD, XPS, and HRTEM in this work.

Effect of Fabricating Temperature on Hardness Characteristics of $Nb/MoSi_2$ Laminate Composite ($Nb/MoSi_2$ 적층복합재료의 경도특성에 미치는 제조온도의 영향)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.37-44
    • /
    • 1999
  • Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $Nb/MoSi_2$ laminate composites composed of $MoSi_2$ powder and Nb sheets were fabricated by the hot press. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like(Nb, Mo)$SiO_2\;and\;Nb2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature.

  • PDF

Development of molybdenum silicides for hydrogen fueled combustion turbine by mechanical alloying (기계적 합금화에 의한 수소연소 터어빈용 Mo-Si계 금속간화합물의 개발에 관한 연구)

  • 이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.665-672
    • /
    • 1997
  • We applied mechanical alloying process by ball milling to produce molybdenum silicides $MoSi_2$ and $Mo_5Si_3$ using a mixture of elemental molybdenum and silicon powders at room temperature. The intermetallic compound MoSi$_3$ have been obtained by ball milling of $Mo_{33}Si_{67}$ mixture powders for 100 h, which is transformed to single $MoSi_2$ phase by subsequent heat treatment up to $725^{\circ}C$. The grain size of the $MoSi_2$ powders thus obtained was 19 nm, being approximately four times smaller than that of the commercial alloy. The intermetallic compound $MoSi_2$ with grain size of 30 nm have been also obtained by ball milling of $Mo_{62}Si_{38}$ mixture powders for 500 h, which is transformed to single $MoSi_2$ phase by heating up to $1000^{\circ}C$. We believe that the retarded ball milling time for the formation of $MoSi_2$ phase is attributed to its complicated crystal structure and large unit cell. The finer grain size in the ball-milled molybdenum silicides powders is expected to improve room-temperature mechanical properties for high-temperature structural materials.

  • PDF