• Title/Summary/Keyword: MoSe2

Search Result 485, Processing Time 0.03 seconds

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

A Study on the Trace Metal Contents in Food by Neutron Activation Analysis (방사화 분석법에 의한 식품 중 미량금속(Mg, Zn, Mn, Mo and Se)에 관한 연구)

  • 이숙경
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.328-332
    • /
    • 1997
  • In order to investigate the trace metals in Korean foods, the contents of Magnesium, Zinc, Manganese, Molybdenum and Selenium are studied in this paper. As show in the Table 1; a total of 250 samples of 25 species were analyzed by neutron activation analysis. The results obtained were as follows; 1. The overall ranges and mean (mg/100 g) were; Mg, 12.212∼151.346(55.164); Zn, 0.045∼38.180 (2.473); Mn, 0.003∼0.796 (0.225);Mo, ND∼0.035 (0.007); Se, ND∼0.069 (0.016). 2. The levels of all metals except Mo in shell fishes were high and the level of Mo in spices was higher than that in other foods. 3. The levels of Zn and Mo in oyster were higher than another spcies.

  • PDF

Na Doping Properties of Cu(In,Ga)Se2 Absorber Layer Using NaF Interlayer on Mo Substrate (Mo 기판위의 NaF 중간층을 이용한 Cu(In,Ga)Se2 광흡수층의 Na 도핑특성에 관한 연구)

  • Park, Tae-Jung;Shin, Dong-Hyeop;Ahn, Byung-Tae;Yun, Jae-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.452-456
    • /
    • 2009
  • In high-efficiency Cu(In,Ga)$Se_2$ solar cells, Na is doped into a Cu(In,Ga)$Se_2$ light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)$Se_2$ absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of $10^3{\Omega}{\cdot}cm$ indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.

Preparation of $CuInSe_{2}$ Absorber Layer for Solar Cells by Non-vacuum Process (비진공방식에 의한 태양전지용 $CuInSe_{2}$ 광흡수층 제조)

  • Kim, Ki-Hyun;Ahn, Se-Jin;Yoon, Kyung-Hoon;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.346-349
    • /
    • 2007
  • 치밀한 $CuInSe_{2}$ (CIS) 태양전지용 광흡수층을 제조하기 위해 상용되는 출발물질을 이용하여 비진공방식인 paste coating 법으로 CIS 막을 제조하였다. 먼저 치밀한 CIS 막 제조를 위해 $Cu_{2}Se$의 액상 거동을 관찰하였다. 이러한 $Cu_{2}Se_{2}$의 액상거동을 위해 Se 분위기에서 Se 증발온도, 기판온도, 열처리시간 등을 다양하게 변화 시켰으며, Se 증발온도 $450^{\circ}C$, 기판온도 $550^{\circ}C$, 열처리시간 30분 그리고 수송가스 ($N_{2}$)를 20 sccm으로 최적조건을 형성하였다. 이러한 최적조건을 바탕으로 치밀한 CIS막을 위해 two-zone RIP (rapid temperature process) 방법으로 Se 분위기 안에서 셀렌화를 위한 열처리를 행하였다. 셀렌화를 위해 다양한 열처리시간에 따라 형성된 CIS 막은 CIS 광흡수층과 Mo 박막 사이에서 $MoSe_{2}$ 층이 형성되었지만, 균일한 CIS 막을 얻었으며 업자성장과 치밀화 거동을 관찰 하였다. 또한, CIS 막의 치밀화를 위해 Se 증발온도와 열처리시간을 고정하고 기판온도를 $600^{\circ}C$로 증가시켜 $Cu_{2}Se$의 액상거동을 관찰하였다. $600^{\circ}C$에서 형성된 CIS 막은 기판온도 $500^{\circ}C$의 시편보다 입자성장과 치밀화가 되었으나 기판으로 사용하는 soda-lime glass의 휨 현상이 발생하였다.

  • PDF

Dietary intakes of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean adult women - Comparison between the data from analyzed and calculated - (성인 여성의 미량무기질(Fe, Zn, Cu, Mn, Se, Mo 및 Cr) 섭취량 - 분석치와 계산치의 비교 -)

  • Kim, Kyung-Hee;Lim, Hyeon-Sook
    • Korean Journal of Human Ecology
    • /
    • v.9 no.3
    • /
    • pp.69-79
    • /
    • 2006
  • The previous studies on the intake of trace elements performed in Korea were only concerned about major elements like Fe, Zn or Cu. There is little data about the intake of minor elements like Mn, Se, Mo or Cr. And most of the data were obtained by calculation using Food Composition Tables or by analysis using atomic absorption spectrophotometers (AAS). The purpose of this study, therefore, was to evaluate the dietary intake of seven trace elements, Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean adult wonmen and to compare the data between analyzed using ICP-MS (or ICP-AES) and calculated by the CAN-Pro (or Food Composition Table). A total of nineteen adult women participated voluntarily in this study and collected one-tenth of the foods that they consumed for three consecutive days. Analyzed intake of Fe of the subjects was $6.94{\pm}2.18$ (calculated, $18.87{\pm}4.50$) mg/day, that of Ze was $9.35{\pm}4.95$ (calculated, $8.35{\pm}2.87mg/day$), that of Cu was $1.18{\pm}0.26\;(1.11{\pm}0.32mg/day)$, that of Mn was $3.69{\pm}0.69\;(2.83{\pm}1.68mg/day)$, that of Se was $41.93{\pm}9.28$ (calculated, $27.58{\pm}6.97{\mu}g/day$), that of Mo was $134.0{\pm}49.1{\mu}g/day$, and that of Cr was $136.5{\pm}147.9{\mu}g/day$. The analyzed Fe intake of the subjects did not meet Estimated Average Requirement (EAR) nor Recommended Intakes (RI) for Korean women aged 20-29 years old. However, the analyzed intakes of the other six elements, Zn, Cu, Mn, Se, Mo, and Cr, seemed to meet each of the respective RIs. The analyzed Fe intake was significantly lower than the calculated one, in fact by 2.72 times, however, the analyzed intakes of the other elements, Mn and Se, were significantly higher and those of Zn and Cu were similar than each of the calculated ones. The difference of the data between analyzed and calculated intakes indicates that it is necessary to set up database on trace element contents of foods of the Food Composition Table and the CAN-Pro so as to have accuracy.

  • PDF

Field-effect Transistors Based on a Van der Waals Vertical Heterostructure Using CVD-grown Graphene and MoSe2 (화학기상증착법을 통해 합성된 그래핀 및 MoSe2를 이용한 반데르발스 수직이종접합 전계효과 트랜지스터)

  • Seon Yeon Choi;Eun Bee Ko;Seong Kyun Kwon;Min Hee Kim;Seol Ah Kim;Ga Eun Lee;Min Cheol Choi;Hyun Ho Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.100-104
    • /
    • 2023
  • Van der Waals heterostructures have garnered significant attention in recent research due to their excellent electronic characteristics arising from the absence of dangling bonds and the exclusive reliance on Van der Waals forces for interlayer coupling. However, most studies have been confined to fundamental research employing the Scotch tape (mechanical exfoliation) method. We fabricated Van der Waals vertical heterojunction transistors to advance this field using materials exclusively grown via chemical vapor deposition (CVD). CVDgrown graphene was patterned through photolithography to serve as electrodes, while CVD-grown MoSe2 was employed as the pickup/transfer material, resulting in the realization of Van der Waals heterojunction transistors with interlayer charge transfer effects. The electrical characteristics of the fabricated devices were thoroughly examined. Additionally, we observed variations in the transistor's performance based on the presence of defects in MoSe2 layer.

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography (Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작)

  • Jo, Eunjin;Gang, Myeng Gil;Shin, hyeong ho;Yun, Jae Ho;Moon, Jong-ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

Dietary Intakes, Serum Concentrations, and Urinary Excretions of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean Young Adult Women (일부 젊은 성인여자의 Fe, Zn, Cu, Mn, Se, Mo 및 Cr의 식사섭취, 혈청농도 및 소변배설)

  • Kim, Kyune-Hee;Lim, Hyeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.39 no.8
    • /
    • pp.762-772
    • /
    • 2006
  • This study was conducted to investigate dietary intakes, serum concentrations, and urinary excretions of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), selenium (Se), molybdenum (Mo), and chromium (Cr) of Korean young adult women. A total of 19 apparently healthy young adult women aged in their twenties or thirties participated voluntarily. One-tenth of all foods they consumed for 3 consecutive days were collected, all urine excreted for the same 3 days was gathered, and fasting venous blood was withdrawn for the trace mineral analyses. Of the food, blood, and urine samples, the contents of Zn, Cu, Mn, Se, Mo, and Cr were analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and that of Fe by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) after wet digestion. The intake of Fe, $6.94{\pm}2.18mg$, did not meet the estimated average requirement (EAR) for Korean women aged 20-29 years old. On the contrary, the intakes of Zn ($9.35{\pm}4.95mg$), Cu ($1.18{\pm}0.26mg$), and Mn ($3.69{\pm}0.69mg$) were sufficient for each respective EAR. However, some of the subjects did not take the EAR for Zn. The Se intake, $41.93{\pm}9.28{\mu}g$, however, was almost similar to the EAR for Se. Although there are no references for Mo and Cr, the intakes of these minerals ($134.0{\pm}49.1\;and\;136.5{\pm}147.9{\mu}g$, respectively) seemed to be excessively sufficient. Serum Fe concentration, $88.7{\pm}36.8{\mu}g/dL$, seemed to be a little bit lower than its reference median but within its normal range. Approximately one-fourth of the subjects were in anemic determined by Hb and Hct and below the deficiency serum level of Fe, $60{\mu}g/dL$. In addition, serum Se concentration, $3.73{\pm}0.60{\mu}g/dL$, was also below its reference median and normal range. However, serum concentrations of Zn ($99.6{\pm}30.6{\mu}g/dL$) and Mo ($0.25{\pm}0.10{\mu}g/dL$) were fairly good compared to each reference median. The status of Cu could be determined as good although its serum concentration ($91.6{\pm}14.6{\mu}g/dL$) was slightly below its reference median. Since there are no decisive reference values, it was not easy to evaluate serum concentrations of Mn ($0.93{\pm}0.85{\mu}g/dL$) and Cr ($8.60{\pm}7.25{\mu}g/dL$). But Mn and Cr status seemed to be adequate. Urinary Fe excretion, $4.48{\pm}1.98{\mu}g/dL$, was pretty much lower than its reference and that of Se, $2.45{\pm}1.17{\mu}g/dL$, was also lower than its average. On the other hand, those of Zn ($42.95{\pm}20.47{\mu}g/dL$) and Cu ($5.68{\pm}1.50{\mu}g/dL$) were flirty good. In case of Mn, urinary excretion, $0.31{\pm}0.09{\mu}g/dL$, was much greater than its reference. Urinary excretions of Mo ($7.48{\pm}2.95{\mu}g/dL$) and Cr ($1.37{\pm}0.41{\mu}g/dL$) were very higher compared to each reference. The results of this study revealed that Korean young adult women were considerably poor in Fe status, a bit inadequate in Se status, partly inadequate in Zn status, and flirty good in Cu, Mn, Mo and Cr status. However, there was a problem of excessive intakes of Mo and Cr. It, therefore, should be concerned to increase the intakes of Fe, Se and Zn but to decrease Mo and Cr consumption for young adult women.

Electrical properties of CuInSe2 thin films formed by selenization of RF sputtered Cu-In-Se2 precursors for solar cell applications (Cu-In-Se2 전구체의 Selenization에 의해 형성된 CuInSe2 박막의 태양전지 응용을 위한 전기적 특성평가)

  • Jeong, Chaehwan;Park, Chanyoung;Kim, Jinhyeok;Lee, Suk Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.79-79
    • /
    • 2010
  • 다른 물질에 비해 많은 우수한 특성을 가지고 있는 CuInSe2(CIS)박막 태양전지는 많은 연구자들에 의해 개발되어 오고 있다. CIS의 대표적인 장점으로는 직접천이형 밴드갭, 높은 흡수계수, 열 안정화상태 및 p형으로의 전도성물질의 가능성 등 다양하다. 또한 간단한 구조를 이용하여 유리같은 싼 기판을 이용하기 때문에 저가형 태양전지로서 많은 각광을 받고 있다. CIGS태양전지는 CIS의 In 사이트에 Ga을 도핑함으로서 만들어지는데 밴드갭은 약 1.4eV이다. CIS박막을 만드는 많은 방법이 존재하나 구성원소로부터 최적화된 조성을 찾을수 있는 방법이 가장 중요한 요소 중의 하나로 인식되고 있으며, 이런점에서 증발법 및 스퍼터링법 등 같은 진공방식이 비진공방식에 비해 훨씬 간편하게 조성비를 맞출수 있다. 그 중에 스퍼터링법은 대면적 박막태양전지로의 가능성으로 비출어 볼때 산업화를 위한 좋은 후보군이 될 수 있다. Selenization을 하기전에 Cu-In-Se의 전구체 조합은 여러개의 타겟으로부터 동시 스퍼터링법이나 다층 전구체법을 사용하여 준비되는데 어떤 방법이 되던지 Se의 부가적인 공급은 불가피하다. 지금까지 많은 관련 연구의 대부분인 구조적, 조성비적 그리고 광학적인 특성평가에 집중되어 오고 있는데, 전기적특성평가의 경우는 면저항, 비저항 같은 간단한 결과 위주로 보고되어 오고 있다. 또한 캐리어농도와 이동도에 대한 보고가 있음에도 불구하고 이해되기에는 충분치 못한 면이 많다.본 발표에서는 태양전지 제조 전단계로서 소다라임유리기판(SLG)위에 Mo의 유무에 따라 CIS박막의 전기적인 특성 변화에 대한 내용을 담고 있다. 소다라임유리($2cm{\times}2cm$)를 기판으로 사용하여 아세톤-에탄올 용액에 초음파세척을 수행하고, Mo 후면전극을 DC 스퍼터링방식을 이용하여 증착을 한다. SLG와 Mo이 코팅된 SLG를 각각 RF 스퍼터 챔버에 이송한 후 수증기 제거를 위해 약 10분간 예열을 한다. 샘플에 대한 전기적특성은 Hall효과 측정장치에 의해 측정이 되며 전기전도도, 캐리어농도, 이동도 및 전도형에 대한 정보가 각각의 변수에 따라 조사된돠. 부가적으로 구조적, 조성비적인 특성을 SEM,XRD 및 EDX를 통해 조사를 하여 전기적 특성에 따른 관계성을 검토한다. SLG와 Mo가 코팅된 SLG위의 CIS박막은 전기적으로 약간 다른 특성을 보일 것으로 예측되며, 이러한 기대를 바탕으로 조성비가 이상적인 화학양론에 근접할 때 p형으로서 제시될 수 있다는 것을 보여줄 것이다.

  • PDF

A Study on the Mechanical Properties of Duplex Stainless Steel Weldment According to Mo Contents

  • Bae, Seong Han;Lim, Hee Dae;Jung, Won Jung;Gil, Woong;Jeon, Eon Chan;Lee, Sung Geun;Lee, Hyo Jong;Kim, In Soo;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.645-651
    • /
    • 2012
  • This study investigated changes in phase fraction caused by the addition of Mo, as well as the subsequent behaviour of N and its effect on the mechanical properties of welded 24Cr-N duplex stainless steel weld metals. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 1.4, 2.5, 3.5 wt%. The delta ferrite fraction increased as the Mo content increased. In contrast, the ${\gamma}$ fraction decreased and changed from a round to an acicular shape. Secondary austenite (${\gamma}^{\prime}$) was observed in all specimens in a refined form, but it decreased as the Mo content increased to the extent that it was nearly impossible to find any secondary austenite at 3.5 wt% Mo. Both tensile and yield strengths increased with the addition of Mo. In contrast, the highest value of ductility was observed at 1.41 wt% Mo. At all temperatures, impact energy absorption showed the lowest value at 3.5 wt% Mo, at which the amount of ${\delta}$-ferrite was greatest. There was no significant temperature dependence of the impact energy absorption values for any of the specimens. As the fraction of ${\gamma}$ phase decreased, the amount of N stacked in the ${\gamma}$ phase increased. Consequently, the stacking fault energy decreased, while the hardness of ${\gamma}$ increased.