• Title/Summary/Keyword: MoC Brake

Search Result 5, Processing Time 0.017 seconds

Signal Processing for MoC Brake Rattle Noise of Moving Vehicles Using Prony Analysis (프로니 분석을 이용한 주행 환경에서의 브레이크 래틀 소음 발생 특성 분석)

  • Lee, Jaecheol;Kwak, Yunsang;Park, Junhong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.245-250
    • /
    • 2015
  • To verify the possibility of generating rattling noise from a motor on caliper brake system, a test was conducted using a caliper excited with vibrations similar to that in a vehicle running on actual roads; this test was conducted using a quiet shaker installed in an anechoic room. After several hours of external excitation, the test assembly was loosened, and the frequency of rattling noise generation increased. A microphone was used to record the generated noise. The measured signals were analyzed by conventional spectrum analysis. Since the noise is generated as an impact response, the advantages of employing Prony analysis was discussed, and the results were compared to those obtained using conventional fast Fourier transforms. The accuracy of Prony analysis was through endurance tests on different brake systems.

Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking (차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계)

  • Park, Jaeeun;Im, Changhyon;Kim, Taesung;Kim, Youngkeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

Development of a Heat-resistant Brake Disk Material (내열성 제동 디스크 소재 개발)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1000-1004
    • /
    • 2007
  • Thermal cracks are among the key factors that control the quality of a brake disk. Thermal cracks may shorten the lifetime of the disc and increase brake noise. Therefore, high heat-resistant brake disk materials are needed. In this study, three kinds of disk material were tested. They are composed of C, Si, Mn, P, S, Cu, Cr, Mo, and Ni. For the three materials, tensile tests, hardness measurement, metallurgical structure analysis, image analyzer analysis, etc were carried out. And friction tests were performed by a small scale dynamometer.

  • PDF

Evaluation of Wear Characteristics of Low-alloy Steel Brake Discs for High Energy Capacity (고에너지용 저합금강 제동디스크의 마모 특성 평가)

  • Dong-gyu Lee;Kyung-il Kim;Gue-Serb Cho;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.532-537
    • /
    • 2024
  • In this study, wear characteristics and microstructure changes due to changes in alloy composition of Ni-Cr-Mo-V and Ni-Cr-Mo low-alloy steels used in brake discs for transportation system such as aircraft and high-speed trains. As a result of the hardness test, the hardness of C-Mo-V steel was the highest at 39.4±0.9HRc, and the hardness of Ni-Cr-Mo steel was the lowest at 32.4±0.6HRc. The friction coefficient tended to decrease as the vertical load increased. At a vertical load of 1 N, the friction coefficient of Ni-Cr-Mo steel was the highest at 0.842, and at a vertical load of 5 N, Mn-Cr-V steel was the highest at 0.696. Ni-Cr-Mo showed the largest wear scar width, depth, and wear amount, with a width of 711 ㎛, a depth of 8.24 ㎛, and a wear amount of 11 mg under a vertical load of 1 N, and a width of 1,017 ㎛, a depth of 19.17 ㎛, and a wear amount of 17 mg under a vertical load of 5 N. As a result of wear mechanism analysis, ploughing, delamination, and adhesion in all specimens, with plastic deformation being more prominently observed in Ni-Cr-Mo.

Tribological Properties of Ceramic Composite Friction Materials Reinforced by Carbon Fibers (탄소섬유가 혼합된 세라믹 복합재 제동마찰재의 마찰·마모 특성)

  • Goo, Byeong-Choon;Kim, Min-Soo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Because the running speed of vehicles is increasing and a shorter braking distance is required, high heat-resistant brake pads are needed to satisfy the requirements of customers and car makers. In the near future, hazardous materials such as Cu, Cr, Zn, and Sb will be restricted from use in friction materials. Ceramic composites reinforced by carbon fibers are good candidates for eco-friendly friction materials. In this study, we develop ceramic composite friction materials. The friction materials are composed of carbon fibers, Si, SiC, graphite, and phenol resin and are prepared by hot forming and heat treatment at high temperatures. The density, void ratio, and compressive strength are $1.59-1.66g/cm^3$, 16.6-20, and 70-90 MPa, respectively. Friction and wear tests are performed using a pin-on-plate-type reciprocating friction tester at 25, 100, and $200^{\circ}C$. The counterpart material is a CrMoV steel extracted from a KTX brake disc. Friction coefficient, wear amount, and wear mechanism are measured and examined. We determine that the friction coefficients depend on the temperature and the fluctuation of the friction coefficients is larger at higher temperatures. The amount of wear increases with the surface temperatures of the specimens. The tribological properties of the developed composites are similar to those of a Cu-based sintered friction material. Through this study, it is confirmed that ceramic composite materials can be used as friction materials.