• Title/Summary/Keyword: Mo foil

Search Result 35, Processing Time 0.03 seconds

A Study on the Durability Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프포일 저널 베어링의 내구성 특성에 관한 연구)

  • 이용복;김태호;김창호;이남수;장건희
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2002
  • This paper describes a durability characteristics of an air-lubricated bump foil journal bearing for high speed turbomachinerys at room temperature. At first, lift-off test and load capacity test were performed to understand the general characteristics of an air-lubricated bump foil Journal bearing. A 52 N weighted bump foil bearing sleeve was lilted off from a rotating Journal at about 3,000 rpm, and produced a load capacity of 500 N at an operating speed of 15,000 rpm. The next was 500 cycles lift-off test with an air-lubricated bump foil journal bearing that had a molybdenum disulfide(MoS$_2$) solid lubricant coated top foil. Data from measuring bearing torque and temperature and the observation of rubbing surfAce were included in results. Therefore the results of this work will aid in proving durability of air-lubricated bump foil journal bearings.

A Study on the Durability Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프포일 저널 베어링의 내구성 특성에 관한 연구)

  • 김태호;이용복;김창호;이남수;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.212-219
    • /
    • 2001
  • This paper describes a durability characteristics of an air-lubricated bump foil journal bearing for high speed turbomachinerys at room temperature. At first, lift-off test and load capacity test were performed to understand the general characteristics of an air-lubricated bump foil journal bearing. A 52N weighted bump foil bearing sleeve was lifted off from a rotating journal at about 3,000rpm, and produced a load capacity of 500N at an operating speed of 15,000rpm. The next was 500 cycles lift-off test with an air-lubricated bump foil journal bearing that had a molybdenum disulfide(MoS$_2$) solid lubricant coated top foil. Data from measuring bearing torque and temperature and the observation of rubbing surface were included in results. Therefore the results of this work will aid in proving durability of air-lubricated bump foil journal bearings.

  • PDF

Development of Uranium-foil Fabrication Technology for Mo-99 Irradiation Target by Self Gravity Flowing for PFC Method (용탕자중공급 PFC법을 이용한 의료용 동위원소 Mo-99 조사타겟용 우라늄박판 제조공정개발)

  • Sim, Moon-Soo;Kim, Chang-Kyu;Kim, Ki-Hwan;Kim, Woo-Jung;Lee, Jong-Hyeon
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.288-292
    • /
    • 2011
  • In order to complement the drawbacks of quartz crucible such as fragile-like break and melt-leakage through open slit nozzle, a new PFC system has been developed using a common graphite crucible and plugging system. The u melt is fed on to the rotating a roll through slit nozzle by self-gravity. The new equipment was designed and manufactured successfully. An effort for optimizing all related parameter has been made. Then using the optimized parameters about 10 meters u foil having very thin thickness, which meets the target thickness of 130 ${\mu}m$ and enough width more than 60 mm could be made. The thickness homogeneity set improved, due to the lower eddy flowing of the melt flow the self-gravity feeding system.

Thermal creep effects of aluminum alloy cladding on the irradiation-induced mechanical behavior in U-10Mo/Al monolithic fuel plates

  • Jian, Xiaobin;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.802-810
    • /
    • 2020
  • Three-dimensional finite element simulations are implemented for the in-pile thermo-mechanical behavior in U-Mo/Al monolithic fuel plates with different thermal creep rates of cladding involved. The numerical results indicate that the thickness increment of fuel foil rises with the thermal creep coefficient of cladding. The maximum Mises stress of cladding is reduced by ~85% from 344 MPa on the 98.0th day when the creep coefficient of cladding increases from 0.01 to 10.0, due to its equivalent thermal creep strain enlarged by 3.5 times. When the thermal creep coefficient of Aluminum cladding increases from 0 to 1.0, the maximum mesoscale stress of fuel foil varies slightly. At the same time, the peak mesoscale normal stress of fuel foil can reach 51 MPa on the 98.0th day for the thermal creep coefficient of 10, which increases by 60.3% of that with the thermal creep un-occurred in the cladding. The maximum through-thickness creep strain components of fuel foil differ slightly for different thermal creep coefficients of cladding. The dangerous region of fuel foil becomes much closer to the heavily irradiated side when the creep coefficient of cladding becomes 10.0. The creep performance of Aluminum cladding should be optimized for the integrity of monolithic fuel plates.

Thermo-mechanical coupling behavior analysis for a U-10Mo/Al monolithic fuel assembly

  • Mao, Xiaoxiao;Jian, Xiaobin;Wang, Haoyu;Zhang, Jingyu;Zhang, Jibin;Yan, Feng;Wei, Hongyang;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2937-2952
    • /
    • 2021
  • A typical three-dimensional finite element model for a fuel assembly is established, which is composed of 16 monolithic U-10Mo fuel plates and Al alloy frame. The distribution and evolution results of temperature, displacement and stresses/strains in all the parts are numerically obtained and analyzed with a self-developed code of FUELTM. The simulation results indicate that (1) the out-of-plane displacements of Al alloy side plates are mainly attributed to the bending deformations; (2) enhanced out-of-plane displacements appear in fuel plates adjacent to the outside Al plates, which results from the occurred bending deformations due to the applied constraints of outside Al plates; (3) an intense interaction of fuel foil with the cladding occurs near the foil edge, which appears more heavily in the fuel plates adjacent to the outside Al plates. The maximum first principal stresses in the fuel foil are similar for all the fuel plates and appear near the fuel foil edge; while, the through-thickness creep strains of fuel foil in the fuel plate near the central region of fuel assembly are larger, and the induced creep damage might weaken the fuel skeleton strength and raise the fuel failure risk.

Electrochemical Characteristics of Si/Mo Multilayer Anode for Lithium-Ion Batteries (리튬 이온 전지용 Si/Mo 다층박막 음극의 전기화학적 특성)

  • Park, Jong-Wan;Ascencio Jorge A.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.297-301
    • /
    • 2006
  • Si/Mo multilayer anode consisting of active/inactive material was prepared using rf/dc magnetron sputtering. Molybdenum acts as a buffer against the volume change of the Silicon. Multilayer deposited on RT (reversible treatment) copper foil current collector to enhance adhesion between Silicon and copper foil. Deposited Silicon was identified as an amorphous. Amorphous has a relatively open structure than crystal structure, thus prevents the lattice expansion and has many diffusion paths of Li ion. When deposited time of Silicon and Molybdenum is 30 second and 2 second respectably, electrode has more capacity and good cycle stability. A 3000 nm thick multilayer was maintained 99% of the initial capacity (1624 $mAhg^{-1}$) after 100 cycles. As the increase of the multilayer thickness (4500 nm, 6000 nm), Si/Mo mutilayer anodes show aggravation cycle stability.

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Microstructural characteristics of a fresh U(Mo) monolithic mini-plate: Focus on the Zr coating deposited by PVD

  • Iltis, Xaviere;Drouan, Doris;Blay, Thierry;Zacharie, Isabelle;Sabathier, Catherine;Onofri, Claire;Steyer, Christian;Schwarz, Christian;Baumeister, Bruno;Allenou, Jerome;Stepnik, Bertrand;Petry, Winfried
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2629-2639
    • /
    • 2021
  • Within the frame of the EMPIrE test, four monolithic mini-plates were irradiated in the ATR reactor. In two of them, the monolithic U(Mo) foil had been PVD-coated with Zr before the plate manufacturing. Extensive microstructural characterizations were performed on a fresh archive mini-plate, using Optical Microscopy (OM), Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS), Electron Backscattered Diffraction (EBSD) and Focused Ion Beam (FIB)/Transmission Electron Microscopy (TEM) with nano EDS. A particular attention was paid to the examination of the U(Mo) foil, the PVD coating, the cladding/Zr and Zr/U(Mo) interfaces. The Zr coating has a thickness around 15 ㎛. It has a columnar microstructure and appears dense. The cohesion of the cladding/Zr and Zr/U(Mo) interfaces seems to be satisfactory. An almost continuous layer with a thickness of the order of 100-300 nm is present at the cladding/Zr interface and corresponds to an oxidized part of the Zr coating. At the Zr/U(Mo) interface, a thin discontinuous layer is observed. It could correspond to locally oxidized U(Mo). This work provides a basis for interpreting the results of characterizations on EMPIrE irradiated plates.

An Experimental Study on the Structural Dynanmic Coefficients of Self-Acting Compliant Foil Journal Bearings (범프 포일 베어링들의 동적 계수에 관한 실험적 연구)

  • Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon;Lee, Yong-Bok
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Experiments were conducted to determine the structural dynamic characteristics of bump foil bearing. The housing of the bearing on the journal was driven by two shakers which were used to simulate dynamic forces acting on the bump foil strips. Three different bump foils(Cu-coated bump, silicon bump, viscoelastic bump) are tested and the dynamic coefficients of three bump foils compared, based on the experimental measurements for a wide range of operating conditions. From the test results, the high damping coefficients of viscoelastic bump are achieved and the possibility of the super-bending-critical operation is suggested.