• Title/Summary/Keyword: Mn/S ratio

Search Result 212, Processing Time 0.03 seconds

Mineral Products and Characteristics of Phase Transformation after Hydrothermal Treatment according to the Synthetic Method and Cation Combination during Birnessite Synthesis (버네사이트 합성 시 합성 방법 및 양이온 조건에 따른 생성 광물 및 열수처리 후 상전이 특성)

  • Min, Soyoung;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.509-517
    • /
    • 2019
  • The birnessite (7Å manganate, δ-MnO2) which is a manganese oxide and comprises manganese nodules, is a major manganese mineral on the earth surface and a precursor in the synthesis of todorokite. In this study birnessite was synthesized by three different methods: Feng et al. (2004) and Luo et al. (1998) based on redox reaction and Ma et al. (1999) based on reduction reaction. 12 birnessite samples were synthesized by different combinations of Na+ and K+ cations based on the base (OH-) and permanganate (MnO4-) reagents in the synthesis. The mineral compositions of synthesized birnessite were identified by XRD, and the two cation ratio in the mineral was measured by ICP. The products obtained after hydrothermal treatment of Mg-buserite, by the precursor of birnessite, was examined by XRD, and then phase transition to todorokite and their characteristics were compared. Our results show that the byproducts and the characteristics of phase transition by each synthetic method have different trends. Hausmannite (γ-Mn3O4) and feitknechtite (β-MnOOH) were formed by both methods in the redox reaction mechanism. By Feng et al. (2004)'s method, manganite (γ-MnOOH) phase only appeared when cation was predominantly Na+. Two birnessite samples synthesized by redox reaction mechanism showed phase transition to todorokite (10Å manganate, OMS-1) when both NaOH and KMnO4 were used together. However, single-phase birnessite was formed by Ma et al. (1999)'s method, and phase transition was confirmed only for the sample when the cation was only composed of Na+.

Corrosion Mechanisms of New Wrought Mg-Zn Based Alloys Alloying with Si, Ca and Ag

  • Ben-Hamu, G.;Eliezer, D.;Shin, K.S.;Wagner, L.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.152-157
    • /
    • 2008
  • New wrought magnesium alloys have increasingly been developed in recent years for the automotive industry due to their high potential as structural materials for low density and high strength/weight ratio demands. However, their poor mechanical properties and low corrosion resistance have led to a search for new kinds of magnesium alloys with better strength, ductility, and high corrosion resistance. The main objective of this research is to investigate the corrosion behaviour of new magnesium alloys: Mg-Zn-Ag (ZQ), Mg-Zn-Mn-Si (ZSM) and Mg-Zn-Mn-Si-Ca (ZSMX). These ZQ6X, ZSM6X1, and ZSM651+YCa alloys were prepared using hot extrusion. AC, DC polarization and immersion tests were carried out on the extruded rods. Microstructure was examined using optical and electron microscopy (SEM) and EDS. The addition of silver decreased the corrosion resistance. The additions of silicon and calcium also affected the corrosion behaviour. These results can be explained by the effects of alloying elements on the microstructure of Mg-Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallisation behaviour.

Fabrication and Characteristics of a White Emission Electroluminicent Device (백색 전계발광소자의 제작과 그 특성)

  • Kim, Woo-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.295-303
    • /
    • 2001
  • White emission thin film electroluminecent device was fabricated with ZnS for phosphor layers and BST ferroelectric thin film for insulating layers. The ZnS:Mn and $ZnS:SmF_3$ layers were used for emission of red color. Also the $ZnS:TbF_3$ and $ZnS:AgF_3$ layers were used to emission of green and blue color, respectively. And the fabrication conditions of the BST insulating layers were followings, that is, the composition ratio of target, substrate temperature, working pressure and operating gas ratio were $Ba_{0.5}Sr_{0.5}Ti_{0.3}$, $400^{\circ}C$, 30 mTorr and 9:1, respectively. The thickness of phosphor were 150 nm for each layers and the insulating layers of upper and bottom were 400 nm and 200 nm, respectively. The luminesence threshold voltage was $75\;V_{rms}$ and the maximum brightness of the thin film electroluminecent device was $3200\;cd/m^2$ at $100\;V_{rms}$.

  • PDF

A Cephalometric Study on factors affecting the FHI (Facial Height Index) in Angle's Class II division 1 malocclusion Patients (한국인 2급 1류 부정교합자의FHI(Facial Height Index)에 영향을 미치는 요소에 관한 두부방사선 계측학적 연구)

  • Park, Young-il;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.26 no.4
    • /
    • pp.401-413
    • /
    • 1996
  • Facial vertical dyscrepancies is decided on the relationship between the anterior vertical facial height and posterior vertical facial height. Thus this study was conducted to determine the factors that affect the FHI, and classify the Class II div.1, malocclusion, which success is dependent on the vertical control according to the FHI, which is the ratio of antero-inferior facial height, posterio-inferior facial height ratio, and to use this as a guideline for treatment. Angle between palatal plane and Mandibular plane were in the order of RH, ID. Thus showing that interrelated angle was more inportant than the independent angle of both, palatal plane and Mandibular plane. The tendency of Cl II div.1. Malocclusion according to FHI, showed the Low group to have Mx. protrusion, prominent development of Mn. ramus, and the Mn. body length and ant. post. position was normal. The Normo group showed slight protrusion of the Maxilla,. The development of the ramus was less than normal and the Mn. was in a slight retruded position. The High group showed the Mx. in a normal position, the development of the Mn. ramus and body was the lowest, and the Mn. was in a posterior position. In observation of the factors affecting the FHI between each groups of Cl II div.l, malocclusion; In the Low group the MP- PP angle was very small, the ID was smililar to the normal group, but the RH was very large thus the FHI was increased. In the Normo group, the PP-MP angle was normal, ID was slightly smaller than the normal group and the RH was slightly smaller than the normal group, thus maintaining a normal FHI ratio. In the High group the PP-MP angle was very large, the ID was similar to the normal group, but the RH was smaller than the normal group thus the FHI was small.

  • PDF

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Effects of Microalloying Elements on Microstructures and Toughness of Simulated HAZ in Quenched and Tempered Steels

  • Chang, W.S.;Yoon, B.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • A series of experiments has been carried out to investigate the effect of titanium, boron and nitrogen on the microstructure and toughness of simulated heat affected zone (HAZ) in quenched and tempered (QT) type 490MPa yield strength steels. For acquiring the same strength level, the carbon content and carbon equivalent could be lowered remarkably with a small titanium and boron addition due to the hardenability effect of boron during quenching process. Following the thermal cycle of large heat input, the coarsened grain HAZ (CGHAZ) of conventional quenched and tempered (QT) type 490MPa yield strength steels exhibited a coarse bainitic or ferrite side plate structure with large prior austenite grains. While, titanium and boron bearing QT type 490MPa yield strength steels were characterized by the microstructure in the CGHAZ, consisting mainly of the fine intragranular ferrite microstructure. Toughness of the simulated HAZ was mainly controlled by the proper Ceq level, and the ratio of Ti/N rather than titanium and nitrogen contents themselves. In the titanium­boron added QT steels, the optimum Ti/N ratio for excellent HAZ toughness was around 2.0, which was much lower than the known Ti/N stoichiometric ratio, 3.4. With reducing Ti/N ratio from the stoichiometric ratio, austenite grain size in the coarse grained HAZ became finer, indicating that the effective fine precipitates could be sufficiently obtained even with lower Ti/N level by adding boron simultaneously. Along with typical titanium carbo­nitrides, various forms of complex titanium­ and boron­based precipitates, like TiN­MnS­BN, were often observed in the simulated CGHAZ, which may act as stable nuclei for ferrite during cooling of weld thermal cycles

  • PDF

Discrimination of Ginseng Habitat by Using Instrumental Analysis Techniques

  • Sohn H. J.;Lee S. K.;Cho B. G.;Kim S. J.;Lee N. Y.;Choi D. S.;Jeong M. S.;Bae H. R.;Yang J. W.
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.238-252
    • /
    • 2002
  • In order to screen out indicators for the discrimination of ginseng habitat, some physical and chemical characteristics of Korean red ginsengs (94 kinds) and Chinese red ginsengs (50 kinds) were analyzed by using a rheometer, an electronic nose system, a combined technique of solid phase micro-extraction (SPME) and gas chromatograph equipped with an electron capture detector (GC/ECD), an X-ray fluorescence spectrometer (XRF), an inductively coupled plasma mass spectrometer (ICP/MS), a near infrared spectrometer (NIRs) and high performance liquid chromatography equipped with evaporative light scattering detector (HPLC/ELSD). The results are summarized as follows: (i) The rhizome strengths of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. (ii) The electronic nose patterns of Korean red ginsengs were significantly different from those of Chinese red ginsengs. (iii) Some unidentified peaks were detected not in the headspace of Korean red ginsengs but in the headspace of Chinese red ginsengs when the headspace volatiles prepared by the SPME technique were analyzed by GC/ECD. (iv) Either the content ratios of K to Ca or Mn to Fe were significantly different between Korean red ginsengs and Chinese red ginsengs. (v) The reflectance ratios of NIRs wavenumbers such as $904\;cm^{-1}\;to\;1088\;cm^{-1}$ for Korean red ginsengs were significantly different from those for Chinese red ginsengs. (vi) The content ratios of ginsenoside-Rg to ginsenoside-Re of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. These results indicate that the rhizome strength, the electronic nose pattern, the occurrence of ECD-sensitive headspace volatile components, the content ratios of K to Ca and Mn to Fe, the NIRs pattern and the content ratio of ginsenoside-Rg to -Re may be indicators for the discrimination of ginseng habitat.

  • PDF

Characterization and Conversion Electron Mössbauer Spectroscopy of HoMn1-x-FexO3 Thin Films by Pulsed Laser Deposition (PLD를 이용한 HoMn1-x-FexO3 박막 제조 및 후방 산란형 뫼스바우어 분광 연구)

  • Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • The hexagonal $HoMn_{1-x}-Fe_xO_3$(x=0.00, 0.05) thin films were prepared using pulsed laser deposition(PLD) method on $Pt/Ti/SiO_2/Si$ substrate. The microstructure and magnetic properties have been studied by x-ray diffraction(XRD), atomic force microscopy (AFH), scanning electron microscope(SEM:), x-ray photoelectron spectroscopy(XPS), and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). From the analysis of the x-ray diffraction patterns, the crystal structure for all films was found to be a hexagonal($P6_3cm$), which was preferentially grown along(110) direction. The lattice constant $c_0$ of the film with x=0.05 was close to that of single crystal, whereas lattice constant $a_0$ with respect to single crystal shows a slight decrease. This difference of lattice parameters between film and single crystal was caused by the lattice mismatch between the film and $Pt/Ti/SiO_2/Si$ substrate. Conversion electron $M\"{o}ssbauer$ spectrum of $HoMn_{0.95}Fe_{0.05}O_3$ thin film shows an asymmetry doublet absorption ratio at room temperature, which is due to the oriented direction of crystallographic domains. This is corresponding with analysis of x-ray diffraction. The quadrupole splitting(${\Delta}E_Q$) at room temperature is found to be $1.62{\pm}0.01mm/s$. This large ${\Delta}E_Q$ was caused by asymmetry environment surrounding Fe ion.

Physicochemical Characteristics of Liquid Fertilizer made from Pig Manure in Korea (국내 돼지분뇨의 액비성분 특성 비교조사)

  • Jeon, Sang-Joon;Kim, Soo-Ryang;Rho, Kyung-Sang;Choi, Dong-Yoon;Kim, Dong-kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.221-228
    • /
    • 2012
  • Physicochemical properties of liquid fertilizer samples of resource organization, which are domestically produced and distributed, are analyzed. Major contents of the research results are as follows. 1. The ratio of complete decomposition for liquid fertilizer is 49% at Public Resource Center and 33% at Liquid Fertilizer Supply Center. The combined ratio of both half-decomposed and un-decomposed liquid fertilizers is over 50% at both centers. 2. The ratio of complete decomposed liquid fertilizer, 67%, is the highest in Gangwon and Gyeonggi-do area. The ratio of un-decomposed liquid fertilizer is high in Chungbuk and Chungnam area. The sum of ratios of the half- and un-decomposed is over 60% in the areas except Gyeonnggi-do and Gangwon-do. 3. As a result of regional comparison of the physicochemical properties of liquid fertilizers, concentration variation in most of the items are large, and the degree of uniformity is found to be considerably low. In particular, concentration variation in T-N and $NH_4$-N is the most noticeable. 4. The items that physicochemically correlated to the degree of decomposition of liquid fertilizer are appeared to be T-N, $NH_4$-N, $NO_3$-N, EC, $SCOD_{Mn}$, and ORP. 5. The physicochemical average values of the liquid fertilizer estimated as "complete decomposed" are appeared to be T-N 829 mg/L,$NH_4$-N 517 mg/L, $NO_3$-N 151 mg/L, $SCOD_{Mn}$ 1,205 mg/L, EC 10.32 mS/cm, ORP -117.12 mV.

Optimization of Pasta with the Addition of Letinus edodes Powder (표고버섯분말 첨가 파스타의 제조조건 최적화)

  • Ko, Seo-Hyun;Joo, Na-Mi
    • Journal of the Korean Dietetic Association
    • /
    • v.15 no.4
    • /
    • pp.356-363
    • /
    • 2009
  • The study aimed to determine the optimal mixing ratio of two different amounts of Letinus edodes powder and egg for preparation of pasta. The complete analysis was conducted using the Design Expert 7 program (State-Easy, Minneapolis, MN). Response surface methodology revealed 10 experimental points, including two replicates for L. edodes powder and egg. L. edodes pasta formulation was optimized using rheology. Lightness and redness displayed a lineal model pattern, whereas yellowness was represented by a quadratic model. The sensory evaluation parameters of texture, color, flavor, appearance and overall quality showed significant differences for color (p<0.01), flavor (p<0.05), texture (p<0.05) and overall quality (p<0.05). All sensory parameters showed significant values in a quadratic model. The optimum formulations processed by numerical and graphical optimization were determined as 15 g of L. edodes powder and 37.5 g of egg.

  • PDF