• 제목/요약/키워드: Mixture formation

검색결과 1,056건 처리시간 0.024초

방사선 육종 차조기와 백출 복합물이 조골세포와 파골세포의 활성에 미치는 영향 (Effects of Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture on Osteoblast Differentiation and Osteoclast Formation)

  • 심부용;지중구
    • 한국응용과학기술학회지
    • /
    • 제38권1호
    • /
    • pp.168-177
    • /
    • 2021
  • 본 연구는 방사선 육종 차조기와 백출 복합물의 조골세포 분화 활성 및 파골세포 형성 억제를 조사하였다. 차조기와 백출 복합물은 MG-63 세포에서 ALP 활성 및 arlizarin red 염색을 확인하였고 조골세포 형성의 영향은 RAW 264.7 세포에서 TRAP 활성과 TRAP 염색을 진행하였다. 세포 독성시험에서 차조기와 백출 복합물은 50 ㎍/㎖ 농도 이하에서 안전한 것으로 확인되었다. ALP 활성 및 골석회화 형성 능력은 대조군보다 활성이 낮았으나, 파골세포에서 TRAP 활성을 유의적으로 감소시켰으며, 효과적으로 TRAP(+) 다핵세포를 억제하였다. 따라서 차조기와 백출 복합물은 골 흡수 억제 활성을 향상시켜 뼈 관련 질환의 예방 및 치료에 효과적인 것으로 보여진다.

주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향 (Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray)

  • 염정국;정성식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

이중동축류 확산화염에서의 매연 및 PAH 생성 특성 (Soot and PAH Formation Characteristic of Concentric Co-Flow Diffusion Flames)

  • 이원남;남연우
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.178-185
    • /
    • 2005
  • The synergistic effect of ethylene/propane mixture on soot formation is studied experimentally using a concentric co-flow diffusion burner, which provides the stratified fuel mixture. The soot volume fraction, soot particle diameter, number density and PAH concentrations are measured with various fuel supply configurations and compared to the homogeneously mixed case. When propane is supplied through the inner nozzle, an increase of soot formation is observed. However, when propane is supplied through the outer nozzle, a decrease is observed. The reaction path of PAH's formed from the pyrolysis process of propane is likely to be responsible to the observed differences. When propane is supplied through the outer nozzle, PAH's are formed in the relatively near oxidation region and exposed to the oxidization environment; on the other hand, when propane is supplied through the inner nozzle, PAH's are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the com position of the mixture but also by the way of mixing.

Mo-25.0at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향 (Effect of Milling Medium Materials on Mechanical Alloying of Mo-25.0at%Si Powder Mixture)

  • 박상보
    • 한국분말재료학회지
    • /
    • 제5권1호
    • /
    • pp.64-70
    • /
    • 1998
  • Milling media of steel and partially stabilized zirconia(PSZ) were used to produce $Mo_3$Si by mechanical alloying(MA) of Mo-25.0at%Si elemental powder mixture. The effect of milling medium materials on MA of the powder mixture have been investigated by XRD and DTA. The reaction rate and the end-product noticeably depended upon the milling medium material. The formation of $Mo_3$Si and $Mo_5Si_3$phases by PSZ ball-milling took place after 15 hr of MA and was characterized by a slow reaction rate as Mo, Si, $Mo_5Si_3$ and $Mo_3$Si coexisted for a long period of milling time. The formation of a new phase by steel ball-milling, however, did not take Place even after 96 hr of MA. DTA and annealing results showed that $Mo_5Si_3$ and $Mo_3$Si were formed after heating the ball-milled powder specimens to different temperatures. At low temperatures, Mo and Si were transformed into $Mo_5Si_3$. At high temperatures, the formation of $Mo_3$Si can be partially attributed to the reaction, 7Mo+Si+$Mo_5Si_3$-.4$Mo_3$Si . The formation of $Mo_3$Si and Mo5Si3 phases by mechanical alloying of the powder mixture and the relevant reaction rate appeared to depend upon the milling medium material as well as the thermodynamic properties of the end-products.

  • PDF

EXPERIMENTAL STUDY ON THE FLOW AND MIXTURE DISTIBUTION IN A VISUALIZATION ENGINE USING DIGITAL PARTICLE IMAGE VELOCIMETRY AND ENTROPY ANALYSIS

  • Lee, K.H.;Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.127-135
    • /
    • 2007
  • The objective of this study is to analyze the effect of velocity and vorticity on stratified mixture formation in the visualization engine. In order to investigate spray behavior, the pray velocity is obtained through the cross-correlation PIV method, a useful optical diagnostics technology and the vorticity calculated from the spray velocity component. These results elucidated the relationship between vorticity and entropy, which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion ate of spray using entropy analysis based on Boltzmann's statistical thermodynamics. Using these methods, we discovered that the homogeneous mixture distribution is more effective as a momentum dissipation of surrounding air than that of the spray concentration with a change in the injection timing. We found that the homogenous diffusion rate increased as the injection timing moved to the early intake stroke process, and BTDC $60^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

다공 스로틀밸브 장착 가솔린기관의 성능 특성에 관한 연구 (A Study on the Characteristics of Gasoline Engine Performance Equipped with Perforated Throttle Valve)

  • 조병옥;이창식
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.50-56
    • /
    • 1996
  • In an fuel injection type gasoline engine, atomization of fuel droplet and mixture formation process are very important to understand engine combustion efficiency, and also has influence directly on the decision of engine performance and pollutant emission. In this study, perforated throttle valve instead of solid type throttle valve was developed and equipped to an SPI engine to promote secondary atomization and good droplet-air mixture formation. From the engine performance lest. it was verified that the case of perforated valve kas more advantages in each experimental parameters such as in cylinder gas pressure, mass burnt ratio, fuel consumption rate, and pollutant emission characteristics than that of solid one equipped. No matter what the same perforated valve, there are some distinct results in engine performance characteristics according to the perforate ratio.

  • PDF

Premature Stiffening of Cement Paste Associated with AFm Formation

  • Chung, Chul-Woo;Lee, Jae-Yong
    • 한국건축시공학회지
    • /
    • 제11권1호
    • /
    • pp.83-90
    • /
    • 2011
  • The purpose of this research is to investigate the effect of AFm formation on the stiffening process of cement paste. High and low alkali sulfate clinkers were used for the experiments. The flow and stiffening behavior of cement paste was investigated using modified ASTM C403 penetration resistance test and oscillatory shear rheology. X-ray powder diffraction (XRD) was used for phase identification associated with stiffening of the paste. It was found from the results that low alkali clinker mixture produced very strong premature stiffening whereas high alkali clinker mixture did not cause premature stiffening. This is because of the large amount of alkali sulfate present in the clinker. Addition of calcium and sodium chloride to the high alkali clinker mixture caused faster stiffening and set.

PLIF를 이용한 희박연소엔진에서의 연료 성층화에 관한 연구 (Fuel Stratification Process in a Lean Burn Internal Combustion Engine by Using Planar Laser Induced Fluorescence)

  • 정경석
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.7-12
    • /
    • 2003
  • Mixture formation in the cylinder of a lean bum engine has been observed by Laser Induced Fluorescence technique. XeCl laser (308nm) was used to produce a laser sheet. 3-pentanone has been added to iso-octane fuel to produce fluorescence, the intensity of which is proportional to the concentration of the fuel. The laser sheet was introduced through the piston window and the fuel distribution in the vertical plane was observed through a side window. Comparison has been made for the cases of selected fuel injection timing as 0, 360, 405, and 450 CA. For the case of 0 and 360 CA injection, uniform fuel distribution in the combustion chamber has been obtained at the ignition time which is favorable for the high load mode. And the late injection cases, 405 and 450 CA, revealed the stratified formation of rich mixture around the spark plug. That extends the lean misfire limit and reduces cyclic variation in the low load mode.

레이저 산란 영상을 이용한 GDI 인젝터의 엔트로피 해석법에 의한 분무 균일도 특성에 관한 연구 (An Investigation on the Spray Homogeneous Characteristics of a GDI Spray for Entropy Analysis Method using Laser Scattering Images)

  • 우영완;이창희;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.44-50
    • /
    • 2002
  • The spray characteristics of GDI(Gasoline Direct Injection) injector affects on engine efficiency and emission of a GDI engine. Thus, many researchers have investigated the spray characteristics and the mixture formation of GDI injector. In this study, it was tried to provide the fundamental data for GDl injector design which effects on the spray macroscopic characteristics such as penetration and spray angle. In addition, the mixture formation analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. The results show that as injection pressure increases but as ambient pressure increases, spray penetration decreases and spray angle doesn't affected by increasing injection pressure and ambient temperature. From the entropy analysis results, we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions.

Does mudcake change the results of modeling gamma-gamma well-logging?

  • Rasouli, Fatemeh S.
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3390-3397
    • /
    • 2022
  • Among the different techniques available, nuclear methods, including gamma-gamma logging tools, are of special importance. Though the real environment which surrounds the drilled borehole is a complex fractured medium which the fluid can flow through the porosities, simulation studies generally use the traditional model of a homogeneous mixture of formation and the liquid. Considering a previously published study, which shows that modeling of fluid flow in fractured reservoirs and simulating the formation as an inhomogeneous fractured medium leads to different results compared with those of homogeneous mixture, here we study the effect of the presence of drilling fluid (mudcake) on the response of the detectors in both the models. To study this effect, a typical gamma-gamma logging tool was modeled by using the MCNPX Monte Carlo code. The results show that the responses of the detectors in the mixture model in the presence of various thicknesses of mudcake are sensitive to the density of the formation material. However, this effect is not notable in the inhomogeneous fractured medium. These results emphasize the importance of the model employed for simulation of the medium in gamma-gamma well-logging.