• 제목/요약/키워드: Mixture density ICA

검색결과 3건 처리시간 0.019초

Brain Alpha Rhythm Component in fMRI and EEG

  • Jeong Jeong-Won
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권4호
    • /
    • pp.223-230
    • /
    • 2005
  • This paper presents a new approach to investigate spatial correlation between independent components of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging pure alpha activity, data from each modality were acquired separately under a 'three conditions' setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using a Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. Then, the sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that is specially designed to find the most probable dipole distribution minimizing the localization error in sense of LMSE. The resulting active dipoles were spatially transformed to 3D MRls of the subject and compared to fMRI alpha activity maps. A good spatial correlation was found in the spatial distribution of alpha sources derived independently from fMRI and EEG, suggesting the proposed method can localize the cortical areas responsible for generating alpha activity successfully in either fMRI or EEG. Finally a functional connectivity analysis was applied to show that alpha activity sources of both modalities were also functionally connected to each other, implying that they are involved in performing a common function: 'the generation of alpha rhythms'.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권4E호
    • /
    • pp.146-155
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single charmel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single charmel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • 장길진;오영환
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.146-146
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.