• Title/Summary/Keyword: Mixing velocity

Search Result 624, Processing Time 0.024 seconds

Experimental Study on Flame-Vortex Interactions in Turbulent Hydrogen Non-premixed Flames with Coaxial Air (동축공기 수소확산 화염에서의 화염과 와류의 상호작용 실험연구)

  • Kim, Mun-Ki;Oh, Jeong-Suk;Choi, Young-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.86-94
    • /
    • 2006
  • This paper investigates the effects of acoustic forcing on NOx emissions and mixing process in the near field region of turbulent hydrogen nonpremixed flames. The resonance frequency was selected to force the coaxial air jet acoustically, because the resonance frequency is effective to amplify the forcing amplitude and reduce NOx emissions. When the resonance frequency is acoustically excited, a streamwise vortex is formed in the mixing layer between the coaxial air jet and coflowing air. As the vortex develops downstream, it entrains both ambient air and combustion products into the coaxial air jet to mix well. In addition, the strong vortex pulls the flame surface toward the coaxial air jet, causing intense chemical reaction. Acoustic excitation also causes velocity fluctuations of coaxial air jet as well as fuel jet but, the maximum value of centerline fuel velocity fluctuation occurs at the different phases of $\Phi$=$180^{\circ}$ for nonreacting case and $\Phi$=$0^{\circ}$ for reacting case. Since acoustic excitation enhances the mixing rate of fuel and air, the line of the stoichiometric mixture fraction becomes narrow. Finally, acoustic forcing at the resonance frequency reduces the normalized flame length by 15 % and EINOx by 25 %, compared to the flame without acoustic excitation.

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

Numerical Simulation of the Mixing and Flow Characteristics in a Micro Cyclone Combustor (마이크로 사이클론 연소기의 혼합 및 유동특성에 관한 수치해석 연구)

  • Choi, Byung-ll;Han, Yong-Shik;Kim, Myung-Bae;Hwang, Cheol-Hong;Oh, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1042-1047
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio ($\Phi$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$<1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.

Combustion Performance Characteristics of a High Pressure Sub-scale Liquid Rocket Combustor (고압 축소형 연소기의 연소 성능 특성에 관한 연구)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.31-36
    • /
    • 2007
  • Combustion performance characteristics of subscale high-pressure combustor were investigated at 70 bar combustion pressure. All tests were successfully performed without any damage on the combustor. The mixing characteristics and distribution pattern of the injectors were found to have considerable influence on the combustion performance. The characteristic velocity of the combustor was higher in the injector with internal mixing than that of external mixing and in the injector with smaller mass flowrate. The pressure fluctuations at the propellant manifolds and the combustion chamber were measured to be less than 3% of the mean combustion pressure to meet the combustion stability criterion and to prove stable combustion characteristics of the combustor.

Large-scale structure of circular jet in transitional region at reynolds number of ${10}^{4}$ (Reynolds수 ${10}^{4}$일때 천이영역에서의 왼형제트의 Large-Scale 구조에 관한 연구)

  • 이택식;최은수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.823-829
    • /
    • 1986
  • The Large-scale structure of the circular jet in the transition region, which influences the subsequent flow in the turbulent region, was studied experimentally. Measuring equipments are composed of the two channel hot-wire anemometer, the computer controlled two-directional traverse mechanism, the data acquisition system, and FFT-analyzer. The circular jet has 50mm diameter. The mean velocity distribution, the velocity fluctuation, the auto 'cross correlations and the power spectra were acquired at moderate Reynolds number of 10$^{4}$. And the VITA method was used to measure the convection velocity of Large-scale eddy. The phase of u'is in advance of that of v'in all regions. .over bar. $R_{u}$(.tau.=0) is approximately zero in the potential core region, but a small regular deviation is observed. At a position in the mixing layer region the convection velocity is different along the part of the eddy, and in this experiment the convection velocity of the inner region is larger than the outer region. The averge convection velocity of the eddy along y/D=0 was approximately constant in the transition region.D=0 was approximately constant in the transition region.

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.

LDV Measurement for the Mixing Effect of the Rotator Shape in a Confined Cylinder (밀폐된 원통내부에서 회전체의 형상에 따른 혼합효과에 대한 LDV 측정)

  • Park, Cheon-Soo;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.720-726
    • /
    • 2001
  • Two-dimensional, angle-resolved LDV(Laser Doppler Velocimetry) measurements of the turbulent rotating flow field in a confined cylinder have been performed. The configurations of interest are flows between a rotating upper disk with a rod attached by a disk or impeller(${\theta}= 90^{\circ},\;45^{\circ}$) and a stationary lower disk in a confined cylinder. The mean flow velocity as well as the turbulent intensity of the flow field have been measured. The results show that the flow is strongly dependent on the position of the impellers or the disk, negligibly affected by the Reynolds number in turbulent flow. It is observed that the mixing effect of the axial flow impeller(${\theta}= 45^{\circ}$) is better than that of the radial flow impeller(${\theta}= 90^{\circ}$) or a disk.

  • PDF

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (I) (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (1))

  • 김경천;정양범;김상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.690-700
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a circular cylinder were examined in a wind tunnel. In order to produce strong thermal stratifications, a compact heat exchanger type variable electric heater is employed. Linear temperature gradient of up to $250^{\circ}C/m$ can be well sustained. The velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured and the smoke wire flow visualization method was used to investigate the wake characteristics. It is found that the temperature field effects as an active contaminant, so that the mean velocity and temperature profiles can not sustain their symmetricity about the wake centerline when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower half of the wake in a stably stratified flow.

A Study on Flow Characteristics of Confined Circular Jet within Pipe (이중원관 구속제트의 유동특성에 관한 연구)

  • Seo M. S.;Choi J. W.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

Velocity and temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, Cheol-Jae;Chung, Han-Shik;Park, Chan-Su;Cho, Dae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.290-295
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF