• 제목/요약/키워드: Mixing vanes

검색결과 42건 처리시간 0.029초

핵연료다발 유동혼합 날개 개발을 위한 CFD 응용 (CFD Application to Development of Flow Mixing Vane in a Nuclear Fuel Assembly)

  • 인왕기;오동석;전태현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.482-487
    • /
    • 2001
  • A CFD study was conducted to evaluate the nuclear fuel assembly coolant mixing that is promoted by the flow-mixing vanes on the grid spacer. Four mixing vanes (split vane, swirl vane, twisted vane, hybrid vane) were chosen in this study. A single subchannel of one grid span is modeled using the flow symmetry. The three mixing vanes other than swirl vane generate a large crossflow between the subchannels and a skewed elliptic swirling flow in the subchannel near the grid spacer. The swirl vane induces a circular swirling flow in the subchannel and a negligible crossflow. The split vane and the twisted vane were predicted to result in relatively larger pressure drop across the grid spacer. Since the average turbulent kinetic energy in the subchannel rapidly decreases to a fully developed level downstream of the spacer, turbulent mixing caused by the mixing vanes appears to be not as effective as swirling flow mixing in the subchannel. In summary, the CFD analysis represented the overall characteristics of coolant mixing well in a nuclear fuel assembly with the flow mixing vanes on the grid spacer. The CFD study is therefore quite useful for the development of an advanced flow-mixing vane.

  • PDF

핵연료집합체에서의 대형이차와류 혼합날개의 열전달 특성에 관한 연구 (A Study of Beat Transfer Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle)

  • 안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.24-31
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In thi present study, the large scale vortex flow(LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane. Heat transfer in the rod bundle occurs greatly at the same direction to cross flow, and maximum temperature at the surface of bundle drops about 1.5K

핵연료 집합체에서의 대형 이차 와류 혼합날개의 난류생성 특성에 관한 연구 (A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle)

  • 안정수;최영돈
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.811-818
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In the present study, the large scale vortex flow (LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about $35D_h$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane.

핵연료집합체에서의 대형이차와류 혼합날개의 난류생성 특성에 관한 연구 (A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle)

  • 안정수;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1819-1824
    • /
    • 2004
  • The common method to improve heat transfer in Nuclear fuel rod bundle is install a mixing vane in space grid. The previous split mixing vane is guides cooling water to swirl flow in sub-channel of fuel assembly. But, this swirl flow decade rapidly after mixing vane and the effect of enhancing the heat transfer vanish behind this short region. The large scale secondary vortex flow was generated by rearranging the inclined angle direction of mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid and the streamwise vorticity in subchannel with LSVF mixing vane sustain two times more than that in subchannel with split mixing vane. The turbulent kinetic energy and the Reynolds stresses generated by the mixing vanes have nearly same scales but maintain twice more than previous type.

  • PDF

선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석 (Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes)

  • 이공희;신안동;정애주
    • 설비공학논문집
    • /
    • 제28권5호
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.

LSVF 혼합날개를 이용한 $6{\times}6$ 연료봉 다발에서의 단상 국부적 열전달계수의 실험적 측정 (Experimental measurements on Single-Phase Local heat transfer coefficients in $6{\times}6$ rod bundles with LSVF mixing vanes)

  • 배경근;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.300-305
    • /
    • 2005
  • The present experimental study investigates single-phase heat transfer coefficients downstream of support grid in $6{\times}6$ rod bundles. Support grid with split mixing vanes enhance heat transfer in rod bundles by generating it make turbulence. But this turbulence is confined to short distance. Support grid with LSVF mixing vanes enhanced heat transfer to longer distance. The corresponding Reynolds number investigated in the present study is Re=30,000. The heat transfer coefficients are measured using heated and unheated copper sensor.

  • PDF

LSVF 혼합날개를 이용한 $6{\times}6$ 봉다발의 부수로에서의 열수력적 특성에 관한 실험적 측정 (Experimental Measurement of the Thermal-hydraulic Characteristics of subchannels in $6{\times}6$ rod bundles using LSVF mixing vanes)

  • 서정식;배경근;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.188-193
    • /
    • 2006
  • In present study, the thermal-hydraulic characteristics of the subchannels are investigated as measuring single-phase heat transfer coefficients and the cross sectional velocity field using LDV in the downstream of support grid in $6{\times}6$ rod bundles. Support grid with mixing vanes make enhancing heat transfer in rod bundles by generating turbulent flow. But this turbulent flow only is reserved in a short distance. Support grid with LSVF mixing vanes keep the turbulent flow a long distance. The experiments are performed at the nominal Reynolds number 30,000 and 50,000. The heat transfer coefficients are measured using heated and unheated copper sensor. In this study, the comparison of local heat transfer coefficients for LSVF mixing vane and split mixing vane is represented.

  • PDF

전산유체역학 소프트웨어 적용성에 관한 규제 지침 개발을 위한 분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석 (Numerical Analysis of Flow Distribution inside a Fuel Assembly with Split-type Mixing Vanes for the Development of Regulatory Guideline on the Applicability of CFD Software)

  • 이공희;정애주
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.538-550
    • /
    • 2017
  • In a PWR (Pressurized Water Reactor), the appropriate heat removal from the surface of fuel rod bundle is important for ensuring thermal margins and safety. Although many CFD (Computational Fluid Dynamics) software have been used to predict complex flows inside fuel assemblies with mixing vanes, there is no domestic regulatory guideline for the comprehensive evaluation of CFD software. Therefore, from the nuclear regulatory perspective, it is necessary to perform the systematic assessment and prepare the domestic regulatory guideline for checking whether valid CFD software is used for nuclear safety problems. In this study, to provide systematic evaluation and guidance on the applicability of CFD software to the domestic nuclear safety area, the results of the sensitivity analysis for the effect of the discretization scheme accuracy for the convection terms and turbulence models, which are main factors that contribute to the uncertainty in the calculation of the nuclear safety problems, on the prediction performance for the turbulent flow distribution inside the fuel assembly with split-type mixing vanes were explained.

분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석 (Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes)

  • 이공희;정애주
    • 대한기계학회논문집B
    • /
    • 제40권5호
    • /
    • pp.329-337
    • /
    • 2016
  • 연료집합체의 지지격자에 설치된 혼합날개는 난류 강화 기구로서 부수로 내부에서 선회류 또는 연료봉 간극사이에서 횡류를 발생시켜 대류열전달을 증진시키는 역할을 한다. 따라서 혼합날개의 기하학적인 형상 및 배열 형태는 혼합날개의 성능을 결정하는 중요한 인자이다. 본 연구에서는 OECD/NEA의 벤치마크 계산에서 활용된 분할 형태의 혼합날개가 장착된 $5{\times}5$ 연료집합체 내부에서의 유동분포 특성을 파악하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX R.14를 사용하여 계산을 수행하였고, 계산결과를 MATiS-H 시험장치의 측정값과 비교하였다. 또한 분할 형태의 혼합날개 형상이 연료집합체 내부유동 형태에 미치는 영향에 대해 설명하였다.

대형 2차 와류에 의한 봉다발 부수로에서의 난류 열전달 향상에 관한 실험적 연구 (Experiment of Turbulent Heat Transfer Performance Enhancement in Rod Bundle Subchannel by the Large Scale Vortex Flow)

  • 서귀현;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1592-1597
    • /
    • 2004
  • Experimental studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel rod bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Experimental studies were carried out at Reynolds Number 60,000 with hydraulic condition. Normal variations of mean velocity and turbulent intensity in the rod bundle subchannel were measured by the 2-color LDV measurement system. The turbulence generated by split mixing vanes has small length scales so that they maintain only about 10DH after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up $25D_{H}$ after the spacer grid.

  • PDF