• Title/Summary/Keyword: Mixing of materials

Search Result 1,966, Processing Time 0.031 seconds

Quality Characteristics of Kanjang Prepared with Meju Cultivated on Different Soybean Cultivars with Bacillus subtilis var. globigii Seed Culture (Bacillus subtilis var. globigii 종균접종 메주로 제조한 콩 품종별 간장의 품질 특성)

  • Choi, Cheong;Choi, Jong-Dong;Chung, Hyun-Chae;Kwon, Kwang-Il;Im, Moo-Hyeog;Kim, Young-Ji;Seo, Jung-Sik;Choi, Kwang-Soo
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.283-287
    • /
    • 1999
  • This study was carried out to select the most suitable soybean cultivars for the quality kanjang preparation. Six cultivars of soybean, Taekwangkong, Kumjungkong #1, Sinpaldalkong #2, Hwangkeumkong, Danbaegkong and Danyeobkong, were used as the raw materials for kanjang preparations. Grain type meju was prepared by the inoculation of Bacillus subtilis var. globigii seed culture on the cooked soybean of respective cultivar and cultivation at $30^{\circ}C$ for 10 days. Two month matured respective kanjang mash, which was prepared by mixing meju and 20% salt brine in the ratio of 1 : 3, was separated and the liquid portions were used as kanjang samples for this work. The highest crude protein content of 47.5% was obtained from Danbaegkong cultivar among six soybean cultivars tested. High sugar soybean cultivars were found to be Kumjungkong l and Danbaegkong and the content 15.87% and 13.33% respectively. The highest total nitrogen(TN) content of 1.18% was shown from Danbaegkong kanjang. Although the major free organic acid in kanjang was found to be succinic acid, no significant differences in free organic acid and sugars content were observed among cultivars. The highest free total amino acids(TA) and glutamic acid(GA) content in kanjang was observed to be 3365 mg% and 734.44 mg% respectively from Danbaegkong kanjang. Danbaegkong cultivar soybean which was shown to contain the highest crude protein was found to be the most suitable one for the preparation of quality kanjang with high TN, GA content and GA/TA ratio.

  • PDF

Sr-Nd-Pb Isotopic Compositions of Lavas from Cheju Island, Korea (제주도 화산암류의 Sr-Nd-Pb 동위원소 연구)

  • 박준범;박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 1996
  • Sr, Nd and Pb isotopic characteristics of alkaline lavas and tholeiites in Cheju Island show that the isotopic compositions of the former slightly overlap, but have relatively more depleted than the latter. However, in viewpoint of the two eruptional stratigraphies of tholeiites, the isotopic compositon of the older one is similar to those of alkaline rocks in Lava Plateau Stage after Lee (1982). These suggest that the parental magmas of alkaline lavas and tholeiites might have originated from the homogenous mantle sourve and that the characteristics of the mantle source to be partially melted might be different between the eruption stages. The isotopic signatures of the bolcanic rocks in Cheju Island overlap with those in Samoa Islands and South China Basin, indicating the DMM-EM IImixing trend. This is distingushed from the DMM-EM I trend of the Cenozoic volcanic rocks in Korea except for cheju Island and Northeastern China. The modelled binary mixing calculation between MM and EM IImaterials indicates that the mantle source of the volcanic rocks in Cheju Island has been mixed about less than 10% of enriched mantle material (EM II) with depleted mantle material (DMM). Concerned with the indentation model between North China Block (NCB) and South China Block (SCB) after Yin an Nie (1993), we suggest that the distinct isotopic features of DMM-EM I and DMM-EM IIof the Cenozoic volcanic rock in Korea as well as China can be explained by the difference of the nature of subcontinental lithospheric mantle as enriched mantle materials, i.e. EM I of NCB, while EM II of SCB.

  • PDF

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.

Construction Waste Management System for Improving Waste Treatment on the Construction Site (건축현장의 환경관리 업무 효율성 향상을 위한 폐기물 관리 시스템 - 공동주택을 중심으로 -)

  • Cha, Namwoo;Park, Wansu;Kim, Kyungrai;Cha, Heesung;Shin, Dongwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.83-91
    • /
    • 2014
  • The problems of environmental pollutions and resources depletion have been growing issues in global construction recently. Efforts to reduce $CO_2$ emission have been also made in all sectors of construction industry these days. As one of the biggest industries that consume a huge amount of resources and generate complex construction wastes, the construction industry has significant impacts on environment issues. However, systematic approach to manage wastes has been rarely made, and most construction wastes from construction sites are being land-filled or incinerated. In this study, a system is proposed to predict the amount of wastes in visual formats, and to control the process of wastes management. The system's main functions include : (1) to estimate the amount of wastes to be generated in project schedule, (2) to categorize the types of wastes, (3) to determine the timing of taking out wastes from sites, and (4) to share information regarding wastes for recycling. A huge amount of wastes are generated in construction process, but most of the wastes have been discharged in forms of mixed wastes, which make them hardly reused. The system not only provide information on wastes to be generated, but also prevent mixing various wastes by classifying them by types and schedules. This features of the system, along with functions to share wastes information with other agencies outside the site, are expected to enhance the level of wastes recycling to a great extent. By saving construction materials through wastes recycling, the system also contributes in reducing $CO_2$ emission.

Bending Strength of Board Manufactured from Sawdust, Rice Husk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 휨성능)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • Purpose of this study is reviewing the use method for the sawdust (sawmilling by-product) and rice husk (Agriculture by-product) by adding charcoal, an eco-friendly material. Mixed composite boards were manufactured with those materials with each density and mixing ratio, and bending performance was investigated. When the addition ratio of sawdust, rice husk and charcoal is 50:20:20 and the resin addition ratio is 10%, as the density of the prepared mixed board ranges from 0.5 g/cm3 to 0.7 g/cm3, the bending strength was 0.42~3.24 N/mm2, dynamic modulus of elasticity was 94.5~888.4 N/mm2, and the static modulus of elasticity was in the range of 31.4~220.7 N/mm2. As the density increased, the bending performance increased, indicating that the density had a significant effect on the bending performance. In a board prepared by setting the density of 0.6 g/cm3, the addition ratio of sawdust to 50%, and the addition ratio of rice husk and charcoal at different ratios, the bending performance showed a tendency to decrease as the addition ratio of charcoal increased. The relationship between the addition ratio of rice husk and charcoal, bending strength, resonance frequency, and dynamic and static bending modulus showed a rather low correlation with the values of the coefficient of determination (R2) of 0.4562, 0.4310, 0.4589, and 0.5847, respectively. Thus, we found that the effect of the addition ratio on the bending performance was small.

Possibility of Using Landfill Coal Ash as CLSM Material for Emergency Restoration of Ground and Road Joint Parts (지반 및 도로 공동부의 긴급복구용 CLSM 재료로 매립 석탄저회 활용 가능성)

  • Jin-Man Kim;Sang-Chul Shin;Kyoung-Nam Min;Ha-Seog Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • This study aims to develop CLSM fill material for emergency restoration using landfill coal ash. As a result of examining physical properties such as particle size distribution and fines content of landfill coal ash, bottom ash, fly ash, and general soil were mixed, and SP was found to have a density of 2.03 and a residual particle pass rate of 7.8 %. CLSM materials that secure fluidity in unit quantities without using chemical admixtures such as glidants and water reducing agents have a high risk of material separation due to bleeding. As a result of this experiment, it was found that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for 4 hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it is judged that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

The Bond Slip Behavior of High Strength and Ultra Lightweight Concrete According to Compressive Strength and Unit Weight (압축강도 및 단위중량에 따른 고강도 초경량 콘크리트의 부착-슬립 거동)

  • Dong-Bum Jo;Jun-Hwan Oh;Ju-Hyun Cheon;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.254-262
    • /
    • 2024
  • The demand for high strength and ultra-lightweight materials to incorporate the advanced technology of nanomaterials into the lengthening of structures is continuously increasing. Therefore, based on existing research results and numerous mixing trials, we derived a mix of high strength and ultra-light concrete of a compressive strength of 100 MPa with a unit weight of 18 kN/m3 and a compr essive str ength of 80 MPa with a unit weight of 16 kN/m3 and evaluated their per for mance. In this paper, 108 specimens corresponding to high strength and ultra-lightweight concrete with a compressive strength of 100 MPa under a unit weight of 18 kN/m3, and a compressive strength of 80 MPa under a unit weight of 16 kN/m3 were manufactured, and the bond characteristics were identified by performing a directly tensile tests, and the bond characteristics were evaluated by comparing them with the experimental results and the current design criteria. It was judged that the bond strength calculation formula of ACI-408R and the experimental results were not accurately reflected, so an bond stress equation based on ACI-408R was proposed. The result of the proposed equation was that the deviation was somewhat reduced. In addition, the results of calculating the CEB-FIP model and the modified CMR model using statistical analysis showed slight differences from the experimental results, but considering that the bond behavior is a local behavior, the proposed model appears to explain the bond behavior of high strength and ultra-light concrete as a whole.

Geochemical Origin, Behavior and Enrichment of Environmental Toxic Elements in Coaly Metapelite from the Deokpyeong Area, Korea (덕평지역의 탄질 변성니질암에 관한 환경적 독성원소의 지구화학적 기원, 거동 및 부화)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.553-566
    • /
    • 1997
  • Origin, behavior and enrichment of environmental toxic elements from the Deokpyeong area were investigated on the basis of major, trace and rare earth element geochemistry. Coaly metapelites of the Deokpyeong area are subdivided into grey phyllite, dark grey phyllite, coaly slate and black slate, which are interbedded along the Ogcheon Supergroup. The coaly slate had been mined for coal, but mining is closed. The coaly and black slates are lower contents of $SiO_2$ and $Al_2O_3$, and higher contents of LOI, CaO, $Na_2O$ and BaO as compared with the phyllitic rocks. Rare earth elements are highly enriched in the coaly and black slate. Average compositions (ppm) of minor and/or environmental toxic elements in the coaly and black slate are revealed as As=127, Ba=30,163, Cd=18, Cr=740, Cu=84, Mo=378, Pb=43, Sb=12, Se=44, U=144, V=8,147 and Zn=292, which are extremely high concentrations than those in the NASC compositions. Major elements (average enrichment index; 5.34) in the coaly metapelites are mostly depleted, excepting $P_2O_5$ and BaO, normalized by NASC. Rare earth elements (average enrichment index; 1.48) are enriched in the coaly slate. On the basis of NASC, minor and/or environmental toxic elements in the coaly metapelites were strongly enriched of all the elements with the exception of Co, Cs, Ni and Sr. Average enrichment index of trace elements in coaly metapelite is 31.51 (coaly slate; 51.94 and black slate; 15.46). Especially, enrichment index of potentially toxic elements (As, Ba, Cr, Cu, Mo, Ni, Sb, Se, U, V and Zn) of the rock is 46.10 (grey phyllite; 7.15, dark grey phyllite; 4.77, coaly slate; 88.96 and black slate; 22.11). These coal formations were deposited in basin of boundary between terrestrial and marine environments deduced to carbon, sulfur (C/S=2.2 to 275.7), trace and rare earth elements characteristics. Irregular behavior and dispersion between major, minor and rare earth elements of those metapelites indicates a variable source materials, incomplete mixing of differential source and/or reequilibrium of diagenesis and metamorphism.

  • PDF

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(1) - Chemical Precipitation or Biological Treatment - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(1) -화학적 응집 및 생물학적 처리-)

  • Han Myung Ho;Huh Man Woo
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.31-39
    • /
    • 2005
  • This study was conducted to remove the dyes in dye wastewater by the chemical precipitation or biological treatment which are one of the main pollutants in dye wastewater. In order to remove the disperse dyes effectively in aqueous solution by chemical precipitation process, coagulation and flocculation tests were carried out using several coagulants on various reaction conditions. It was found that the Ferrous sulfate was the most effective coagulant for the removal of disperse dye(DB79), and we could get the best result for the removal of disperse dye(DB56) in the aspects of TOC removal efficiency and sludge yield. When the Ferrous sulfate dosage was 800mg/l, the sludge settling velocity was very fast$(SV_{30}=4\%)$, and the color was effectively removed in the disperse dye(DB79) solution. Although the color removal was ineffective when the Alum was used as a coagulant, the sludge yield decreased in comparison with the Ferrous sulfate or the Ferric sulfate being used in the disperse dye(DB56) solution. In order to decolorize disperse dye(DR17) by using biological treatment process, a strain which has potential ability to degrade disperse dyes was isolated from natural system. The optimal culture conditions of temperature and pH were found to be $40^{\circ}C\;and\;8.5\~9$, respectively. When yeast extract was mixed with polypeptone at the mixing ratio of 1:1 as a nitrogen source, decolorization efficiency was highest$(93\%)$ among the nitrogen sources. The strain screened was excellent to adjust to pH, and it seems to have ability to control pH needed to growth. The optimal culture conditions in concentration of $MgSO_{4.}\cdot7H_2O\;and\;KH_2PO_4$ were $0.1\%(w/v)\;and\;0.2\%(w/v)$, respectively. Strains degrading and decolorizing reactive dyes, RB198 and RR141 which were isolated from water system, are named RBK1 and RRK. And the cell growth characteristics of RBK1 and RRK were investigated. The optimal culture conditions of temperature and pH were found to be 30t' and 7.0, respectively. Optimum nitrogen source was peptone, and it was found that decolorization efficiencies by strains RBK1 and RRK, were $85\%\;and\;62\%$, respectively, with introduction of 4,000mg/l of peptone. In the case of RBK1, color removal efficiencies were very high below 400mg/l. Decolorization efficiency was over $90\%$ at 20hours of culture time. The Color degradation ability of RRK was lower than that of RBK1.

Investigation of Thermal Stability of Epoxy Composite Reinforced with Multi-Walled Carbon Nanotubes and Micrometer-Sized Silica Particles (다중벽 탄소나노튜브와 마이크로미터 크기 실리카 입자로 강화된 에폭시 복합재료의 열 안정성에 관한 연구)

  • Oh, Ryun;You, Byeong Il;Ahn, Ji Ho;Lee, Gyo Woo
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.306-314
    • /
    • 2016
  • In this study, to improve the thermal stabilities of the epoxy composite specimens in addition to the enhanced mechanical properties, those were reinforced with carbon nanotubes and micrometer-sized silica particles. To disperse the filler in matrix relatively simple physical process, specimens were fabricated using shear mixing and sonication. Tensile strength, coefficients of thermal expansion and thermal conductivity of the specimens were measured with varied contents of the two fillers. The mechanical and thermal properties were also discussed, and the experimental results of thermal expansion related to the thermal stability of the specimens were compared with those from several micromechanics models. The hybrid composites specimens incorporating 0.6 wt% of carbon nanotubes and 50 wt% of silica particles showed better mechanical properties than the others with increase in tensile strength up to 11%, with respect to those of the baseline specimens. As the silica contents were increased the thermal expansion was reduced down to 36%, and the thermal stability was improved with the decreased thermal deformation. Thermal conductivity of the epoxy composite specimens incorporating 50 wt% of silica particles was enhanced, which demonstrate improvement of 72%. The mechanical and thermal properties of the hybrid composites specimens incorporating the two fillers were improved simultaneously.