• 제목/요약/키워드: Mixing of materials

검색결과 1,946건 처리시간 0.027초

Self-Organized Grafting of Carbon Nanotubes by End-Functionalized Polymers

  • Lee, Sun-Hwa;Park, Ji-Sun;Koo, Chong-Min;Lim, Bo-Kyung;Kim, Sang-Ouk
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.261-266
    • /
    • 2008
  • A variety of end-functionalized polymers were grafted spontaneously onto multi-walled carbon nano-tubes (MWNTs) using a solution mixing process. The end-functional groups of the polymers underwent noncovalent grafting to the defect sites at the surface of the purified MWNTs through zwitterionic interaction or hydrogen bonding. The physically grafted polymers including polystyrene (PS), poly(methyl methacrylate) (PMMA), polyethylene oxide (PEO), and polydimethylsiloxane (PDMS) provided sufficient compatibility with an organic solvent or polymer matrix, such that the nanotubes could be finely dispersed in various organic media. This approach is universally applicable to a broad range of polymer-solvent pairs, ensuring highly dispersed carbon nanotubes through simple solution mixing.

액상교반법에 의한 AI/TiCp 복합재료의 제조에 관한 연구(I) (A Study on the Fabrication of Al/TiCp Composites by Liquid Mixing method(I))

  • 임종국;김명한;최재하
    • 한국재료학회지
    • /
    • 제3권5호
    • /
    • pp.529-537
    • /
    • 1993
  • TiC 입자를 강화재로 한 AI금속기지 복합재료를 액상교반법으로 제조하는데 따른 제조조건과 물성특성과의 관계를 조사하였다. TiC 입자는 중량비 10%를 첨가하였으며, 젖음성을 향상시키기 위하여 1.5wt%의 Mg을 첨가하였다. TiC입자 첨가에 의하여 내마모 특성, 인장강도, 경도 등이 증가 되었으나 과도한 교반은 기계적 특성을 저하시켰다. 본 실험조건에서 교반 속도의 최적조건은 500rpm이었다. Wetting agent로서 첨가한 Mg은 기지에 고루 분산하였다.

  • PDF

접착식 콘크리트 덧씌우기를 위한 초속경화 첨가재 현장 혼합 폴리머 개질 콘크리트의 적용성 연구 (Application of In-Situ Mixing Hydration Accelerator on Polymer Modified Concrete for Bonded Concrete Overlay)

  • 김영규;홍성재;이승우
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.85-95
    • /
    • 2015
  • PURPOSES : Recently, bonded concrete overlay has been used as an alternative solution in concrete pavement rehabilitation since its material properties are similar to those of the existing concrete pavements. Deteriorated concrete pavements need rapid rehabilitation in order to prevent traffic jams on Korean expressways. Moreover, speedy and effective repair methods are required. Therefore, the use of bonded concrete overlay with ultra-rapid hardening cement has increased in an effort to reopen promptly the expressways in Korea. However, mobile mixer is required for ultra-rapid hardening cement concrete mixing in the construction site. The use of mobile mixer causes various disadvantages aforementioned such as limitation of the construction supply, open-air storage of mixing materials, increase in construction cost, and etc. In this study, therefore, hydration accelerator in-situ mixing on polymer modified concrete produced in concrete plant is attempted in order to avoid the disadvantages of existing bonded concrete overlay method using ultra-rapid hardening cement. METHODS : Bonded concrete overlay materials using ultra-rapid hardening cement should be meet all the requirements including structural characteristics, compatibility, durability for field application. Therefore, This study aimed to evaluate the application of hydration accelerator in-situ mixing on polymer modified concrete by evaluating structural characteristics, compatibility, durability and economic efficiency for bonded concrete overlay. RESULTS : Test results of structural characteristics showed that the compressive, flexural strength and bond strength were exceed 21MPa, 3.15MPa and 1.4MPa, respectively, which are the target strengths of four hours age for the purpose of prompt traffic reopening. In addition, tests of compatibility, such as drying shrinkage, coefficient of thermal expansion and modulus of elasticity, and durability (chloride ions penetration resistance, freezing-thawing resistance, scaling resistance, abrasion resistance and crack resistance), showed that the hydration accelerator in-situ mixing on polymer modified concrete were satisfied the required criteria. CONCLUSIONS : It was known that the hydration accelerator in-situ mixing on polymer modified concrete overlay method was applicable for bonded concrete overlay and was a good alternative method to substitute the existing bonded concrete overlay method since structural characteristics, compatibility, durability were satisfied the criteria and its economic efficiency was excellent compare to the existing bonded concrete overlay methods.

콘크리트의 블리딩에 미치는 시멘트 및 믹싱시간의 영향 (Influence of Cement and Mixing time Factor on the Bleeding of Concrete)

  • 이원암;엄태선;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.593-596
    • /
    • 2008
  • 콘크리트의 블리딩은 재료분리의 일종으로서 콘크리트 품질뿐만 아니라 내구성을 저하시키는 원인으로 작용한다. 본 연구에서는 콘크리트 블리딩에 영향을 미칠 것으로 예상되는 시멘트 및 믹싱시간의 두 요인의 변화에 따른 특성을 파악하여 블리딩 제어기술 확보를 위한 기초자료를 제공하고자 한다.연구결과에 의하면, 믹싱시간이 증가할수록 블리딩율도 증가하는 추세를 나타내고 있었다. 블리딩양(믹싱시간 90초)은 시멘트 특성에 의한 차이가 뚜렷하게 나타나고 있었으며, 콘크리트 특성값(블리딩율, 슬럼프 및 재령 3일 압축강도)은 믹싱시간과 비례적인 관계가 있었다. 또한, 슬럼프 손실율과 믹싱시간은 반비례적인 관계가 존재하였고, 압축강도값은 초기재령에서만 믹싱시간에 의한 영향을받고 있었다.향후, 최적 믹싱시간 도출을 위한 다양한 검토가 필요할 것으로 판단된다.

  • PDF

인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발 (Development of two-component polyurethane metering system for in-mold coating)

  • 서봉현;이호상
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

새로운 CAD/CAM 블록의사용 : PICN and RNC (Novel CAD/CAM hybrid blocks: PICN and RNC)

  • 고경호
    • 대한치과의사협회지
    • /
    • 제56권3호
    • /
    • pp.167-174
    • /
    • 2018
  • The development of dental materials has widened the scope of materials by changes in processing methods. CAD/CAM processing enables the use of zirconia as a dental material. Recent esthetic materials development has been made. For aesthetic purposes, a block for CAD/CAM processing by mixing polymer and ceramic materials are fabricated. However there is no guideline of how these materials should be used in actual clinical practice. Mechanical properties, wear and clinical studies were reviewed.

  • PDF

완충포장소재를 위한 고지배합비율에 따른 펄프몰드의 물성 변화 연구 (Effects of Mixing Ratio of ONP and OCC on Physical Properties of Pulp Molds for Cushion Packaging Materials)

  • 박인식;김재능;김대용;이윤석
    • 펄프종이기술
    • /
    • 제40권1호
    • /
    • pp.47-54
    • /
    • 2008
  • As the demands of environment protection increases, the pulp mold container is developed to substitute for EPS (expanded polystyrene) as a shock absorbing packaging material. The water-absorbing ratio and mechanical properties such as tensile strength and compressive strength of pulp mold are important factors to evaluate its shock absorbing characteristics. Influences of mixing ratios of ONP (old newspaper) and OCC (old corrugated container) on physical properties of pulp mold were investigated at various conditions of temperature and relative humidity. The optimum mixing ratio of ONP and OCC was also searched based on physical properties. The results showed that when relative humidity was increased from 60% to 90%, the water absorption ratio of pulp mold increased significantly, tensile strength decreased 20$\sim$30%, and compressive strength decreased 10$\sim$20%. In addition, the optimum mixing ratio of ONP and OCC was found to be 50%:50%.

Thermal-Mixing Analyses for Safety Injection at Partial Loop Stagnation of a Nuclear Power Plant

  • Hwang, Kyung-Mo;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1380-1387
    • /
    • 2003
  • When a cold HPSI (High pressure Safety Injection) fluid associated with an overcooling transient, such as SGTR (Steam Generator Tube Rupture), MSLB (Main Steam Line Break) etc., enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters the downcomer of the reactor pressure vessel, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. As general thermal-hydraulic system analysis codes cannot properly predict the thermal stratification phenomena, RG 1.154 requires that a detailed thermal-mixing analysis of PTS (pressurized Thermal Shock) evaluation be performed. Also. previous PTS studies have assumed that the thermal stratification phenomena generated in the stagnated loop side of a partially stagnated primary coolant loop are neutralized in the vessel downcomer by the strong flow from the unstagnated loop. On the basis of these reasons, this paper focuses on the development of a 3-dimensional thermal-mixing analysis model using PHOENICS code which can be applied to both partial and total loop stagnated cases. In addition, this paper verifies the fact that, for partial loop stagnated cases, the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is almost neutralized by the strong flow of the unstagnated loop but is not fully eliminated.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

이산요소법 교반 시뮬레이션을 이용한 다자유도 로봇 믹서 성능 평가 (Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations)

  • 손권중
    • 한국융합학회논문지
    • /
    • 제11권10호
    • /
    • pp.219-224
    • /
    • 2020
  • 입상재료를 균일하게 혼합하기 위한 입자 교반기는 다양한 산업 분야에서 널리 활용되는 기계 장치로써 응용 분야와 혼합 조건에 따라 다양한 형태로 개발되어 사용되고 있다. 하지만 대부분 산업용 교반기의 구동 자유도는 2 자유도 이하로써 혼합재료의 기계적 특성 및 교반기의 구조를 제외한 운전 조건 측면에서 최적 교반을 위한 인자의 선택범위는 넓지 않다. 운전 조건의 선택 범위를 확대하기 위해 본 논문에서는 다관절 로봇과 입자용 드럼 믹서를 융합한 다자유도 로봇 교반기를 제안하였고 가상 작동 환경에서 교반 성능을 평가하였다. 입자 유동 해석 기법인 이산요소법을 이용하여 다자유도 로봇 믹서의 성능 예측 시뮬레이션을 수행하였고 제안된 장치 설계안이 기존 교반기보다 개선된 혼합 성능을 발휘할 수 있다는 것을 확인하였다.