• Title/Summary/Keyword: Mixing fuel

Search Result 783, Processing Time 0.027 seconds

The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio (CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구)

  • Choi, Gun-Ho;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.

A Numerical Study on Gas Mixing Time in a Low-Pressure (Driven) Section of a Shock Tube (충격파관 저압실내 가스 혼합시간 예측에 관한 수치해석)

  • Wang, YuanGang;Cho, Cheon Hyeon;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.23-28
    • /
    • 2017
  • The fuel and oxidizer mixing process in the shock tube driven section is simulated numerically. The boundary condition is set based on an shock tube experimental condition. The objective is to predict the gas mixing time for experiments. In the experiment, the amount of fuel to be injected is determined in advance. Then, according to duration of fuel injection, 5 cases with the same fuel mass but different fuel mass flow rate are simulated. After fuel is injected into the driven section, the fuel and air will be mixed with each other through convection and diffusion processes. The mixing time is predicted numerically for experiments.

A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료집합체에서의 대형이차와류 혼합날개의 난류생성 특성에 관한 연구)

  • An, J.S.;Choi, Y.D.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1819-1824
    • /
    • 2004
  • The common method to improve heat transfer in Nuclear fuel rod bundle is install a mixing vane in space grid. The previous split mixing vane is guides cooling water to swirl flow in sub-channel of fuel assembly. But, this swirl flow decade rapidly after mixing vane and the effect of enhancing the heat transfer vanish behind this short region. The large scale secondary vortex flow was generated by rearranging the inclined angle direction of mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid and the streamwise vorticity in subchannel with LSVF mixing vane sustain two times more than that in subchannel with split mixing vane. The turbulent kinetic energy and the Reynolds stresses generated by the mixing vanes have nearly same scales but maintain twice more than previous type.

  • PDF

A Study of Beat Transfer Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료집합체에서의 대형이차와류 혼합날개의 열전달 특성에 관한 연구)

  • An, Jeong-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.24-31
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In thi present study, the large scale vortex flow(LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane. Heat transfer in the rod bundle occurs greatly at the same direction to cross flow, and maximum temperature at the surface of bundle drops about 1.5K

A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료 집합체에서의 대형 이차 와류 혼합날개의 난류생성 특성에 관한 연구)

  • An Jeong-Soo;Choi Yong-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.811-818
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In the present study, the large scale vortex flow (LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about $35D_h$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane.

Flame characteristics of direct fired burner in fuel-air mixing conditions (열처리로 직화버너에서 연료-공기 혼합에 따른 화염 영향)

  • Lee, Cheolwoo;Kim, Youngho;Kim, Insu;Hong, Junggoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.285-288
    • /
    • 2014
  • Experiments have been performed for the burners used in the non-oxidizing direct fired furnaces for the cold rolled plate to investigate the effect of fuel/air mixing patterns of the burner nozzle on flame shape, temperature and combustion gas concentration. CFD simulation has also been performed to investigate the mixing state of air-fuel for a nozzle mixing burner and a partially pre-mixing burner. A partially pre-mixing burner showed that flame temperature increased up to $26^{\circ}C$ on average compared than that of the nozzle mixing. It also showed that the mixing distance is important at the partially pre-mixing burner. Test results for a partially pre-mixing burner showed that the residual oxygen concentration and the volume ratio of $CO/CO_2$ of the flame were applicable to be used in field furnaces.

  • PDF

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes (선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gonghee;Shin, Andong;Cheong, Aeju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.

Effect of Fuel Mixing Ratio on Fuel Consumption in a Oil Fired Power Plant (중유화력발전소에서 바이오연료 혼합연소가 연료소비량에 미치는 영향)

  • Hong, Sangpil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • Each of fuel consumption per hour was measured at the 320 MW and 380 MW generator output while changing mixing ratio of bio fuel oil to 50%, 80% and 100%. Fuel consumption per hour was increased from 11.0% to 20.4% as mixing ratio of bio fuel oil was changed from 50% to 100% at the 320 MW generator output comparing with fuel consumption per hour in case of bunker-C oil single firing. Fuel consumption per hour was also increased from 12.0% to 21.1% as mixing ratio of bio fuel oil was changed from 50% to 100% at the generator output 380 MW. Furthermore, it was confirmed that plant efficiency was decreased as mixing ratio of bio fuel oil was increased from 50% to 100% as a result that plant efficiency was calculated using the measured fuel consumption per hour, the generator output and the gross heating value.

  • PDF

A Fundamental Experiment on the Stabilization of a Methane-Air Edge Flame in a Cross-Flowing Mixing Layer in a Narrow Channel (좁은 채널 내부의 수직 혼합 경계층에 형성된 메탄-공기 에지-화염의 안정화 기초 실험)

  • Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.527-534
    • /
    • 2009
  • Flame stabilization characteristics were experimentally investigated in a fuel-air cross flowing mixing layer. A combustor consists of a narrow channel of air steam and a cross flowing fuel. Depending on the flow rates of methane and air, flame can be stabilized in two modes. First is an attached flame which is formulated at the backward step where the methane and air streams meet. Second is a lifted-flame which is formulated within the mixing layer far down steam from backward step. The heights and flame widths of the lifted flames were measured. Flame shapes of the lifted flames were similar to an ordinary edge flame or a tribrachial flame, and their behavior could be explained with the theories of an edge flame. With the increase of the mixing time between fuel and air, the fuel concentration gradient decreases and the flame propagation velocity increases. Thus the flame is stabilized where the flow velocity is matched to the flame propagation velocity in spite of a significant disturbance in the fuel mixing and heat loss within the channel. This study provides many experimental results for a higher fuel concentration gradient, and it can also be helpful for the development and application of a smaller combustor.