• Title/Summary/Keyword: Mixing bar arrangement

Search Result 6, Processing Time 0.021 seconds

A study on the soil conditioning behaviour according to mixing method in EPB shield TBM chamber (EPB 쉴드 TBM 챔버 내 혼합방법에 따른 배토상태거동에 대한 연구)

  • Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.233-252
    • /
    • 2021
  • This paper is a study to improve the efficiency of mixing technology in the shield TBM chamber. Currently, the number of construction cases using the TBM method is increasing in Korea. According to the increasing use of TBM method, research on TBM method such as Disc Cutter, Cutter bit, and Segment also shows an increasing trend. However, there is little research on the mixing efficiency in chamber and chamber. In order to improve the smooth soil treatment and the behavior of the excavated soil, a study was conducted on the change of the mixing efficiency according to the effective mixing bar arrangement in the chamber. In the scale model experiment, the ground was composed using plastic materials of different colors for ease of identification. In addition, the mixing bar arrangement was different and classified into 4 cases, and the particle size distribution was classified into single particle size and multiple particle size, and the experiment was conducted with a total of 8 cases. The rotation speed of the cutter head of all cases was the same as 5 RPM, and the experiment time was also carried out in the same condition, 1 minute and 30 seconds. In order to check the mixing efficiency, samples at the upper, middle (left or right), and lower positions of each case were collected and analyzed. As a result of the scaled-down model experiment, the mixing efficiency of Case 4 and Case 4-1 increased compared to Case 1 and Case 1-1, which are actually used. Accordingly, it is expected that the mixing efficiency can be increased by changing the arrangement of the mixing bar in the chamber, and it is considered to be effective in saving air as the mixing efficiency increases. Therefore, this study is considered to be an important indicator for the use of shield TBM in Korea.

Flexural Behavior of Fiber Reinforced Concrete Beams with Hybrid Double-layer Reinforcing Bars (이중 보강근을 가지는 FRC 보의 휨성능)

  • Kim, Seongeun;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.199-207
    • /
    • 2018
  • Experimental programs were performed to evaluate the flexural performance of fiber reinforced concrete(FRC) beams using a hybrid double-layer arrangement of steel bars and fiber reinforced polymer(FRP) bars or using FRP bars only. A total of seven beam specimens were produced with type of tensile reinforcing bar(CFRP bar, GFRP bar, steel bar) and the poly vinyl alcohol(PVA) fiber mixing ratio(0.5%, 0%) as variable. An analysis method for predicting the flexural behaviors of FRC beams with hybrid arrangement of heterogeneous reinforcing bars through finite element analysis was proposed and verified. In case of the specimens with the double-layer reinforcing bars, the test results showed that the first cracking load of specimen with a double-layer arrangement of steel bars was greater by 26-34% than specimens with a hybrid double-layer arrangement of steel and FRP bars. In maximum flexural strengths, the specimen that used CFRP bars as bottom tensile reinforcing bar showed the greatest strength among the specimens with the double-layer reinforcing bars. When the maximum moment value obtained through experiments was compared with that obtained through analysis, the ratio was 1.2 on average, the standard deviation was 0.085, and the maximum error rate was 22% or less. Based on these results, the finite element analysis model proposed in this study can effectively simulate the actual behavior of the beams with hybrid double-layer reinforcing bars.

Flowability Evaluation of Binary and Ternary Blended of Ultra Flowing Self-Compacting Concrete (2성분계 및 3성분계 초유동 자기충전 콘크리트의 유동성 평가)

  • Choi, Yun-Wang;Jeon, Jun-Yong;Kim, Chung-Un;Jung, Jea-Guane;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.485-488
    • /
    • 2006
  • This research has evaluated flowability of ultra flowing self-compacting concrete, which is limitedly used for traditional building structures, in accordance with the first class regulations of Japan Society of Civil Engineering(JSCE) that can be applied to overcrowding-arrangement of bar, as a part of application methods that ultra flowing self-compacting concrete is applied to both precast and prestress bridge structures. The experimental results show that the flowability is acceptable in ternary blended among binary and ternary blended mixings, which satifies the first class regulation of JSCE. It is also concluded to use fly ash to increase viscosity of concrete in the case of segregation resistance because of low viscosity in the mixture of slag from blast furnace and limestone micropowder. Satisfying goals of every mixing after U-box self-compacting experiment, we conclude that ultra flowing self-compacting concrete is applicable to bridges and civil constructions of overcrowding arrangement of bar with evaluation of flowability of ultra flowing self-compacting concrete.

  • PDF

Experimental Study on mixing of Recycled Concrete Fine Aggregate in Self-Consolidating Concrete (자기충전 콘크리트의 재생골재 혼입을 위한 실험적 연구)

  • Song, Il-Hyun;Ryou, Jae-Suk;Kim, Jong-Pil;Park, Kwang-Pil;Kim, Seong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.573-576
    • /
    • 2008
  • Recently, it is the well-known that there are some kinds of problem the waste concrete generated while repairing, reinforcing and dismantling of structures in the domestic and overseas. In this paper, various tests were performed about the use of the recycled concrete fine aggregate for the materials of high quality and structural concrete. And also, in order to improve structural performance of the concrete structure the steel frame was under overcrowded arrangement of steel bar. Consequently, it was be necessary the Self-Consolidating Concrete(SCC) that can fill the concrete into the work-form corner which has become overcrowded arrangement of steel bar without any other vibration. The purpose of this study is related to the properties of Self-Consolidating Concrete(SCC) according to mixing ratio of recycled concrete fine aggregate.

  • PDF

Computer Program for Quality Control of Ready Mixed Concrete (레디믹스트 콘크리트의 품질관리 프로그램 개발)

  • 최재진;박원태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • To make practical application of mixing test results to concrete mix design, experimental tests of concrete were done and the relationship between cement-water ratio and compressive strength of concrete was obtained. A computer program which can be used for data base of air content, slump and compressive strength test results was developed. The program draws $\bar{X}$-R or X-Rs control charts and has data sheets for arrangement of material test results. The computer program also helps calculation of concrete mix proportions for mixing tests and contains dictionary of concrete technical terms.

  • PDF

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.