• Title/Summary/Keyword: Mixing Tube

Search Result 187, Processing Time 0.03 seconds

Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes (사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 성능)

  • Choi, Byung-Nam;Yi, Fung;Sim, Hyun-Min;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.279-288
    • /
    • 2013
  • Heat transfer and pressure drop characteristics of fin-and-tube heat exchangers having sine wave fins and oval tubes were investigated. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7 mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. The effect of fin pitch on the j and f factors was negligible. The effect of the tube row on the j factor, however, was different from that of common fin-and-tube heat exchangers having plain fins and round tubes. The highest j factor was obtained for a two-row configuration, while the lowest one was obtained for a one-row configuration. A possible reason was attributed to the flow mixing characteristics of the sine wave channel of the present geometry. Comparison with a plain fin-and-tube heat exchanger having 15.88 mm O. D. round tube reveals that the present oval fin-and-tube heat exchanger shows generally superior thermal performance, except for the one-row configuration.

A CFD ANALYSIS ON THE INFLUENCE OF OPERATING CONDITIONS AND EJECTOR CONFIGURATION ON THE HYDRODYNAMICS AND MASS TRANSFER CHARACTERISTICS OF GAS-LIQUID EJECTOR

  • Utomo, Tony;Jin, Zen-Hua;Yi, Chung-Seub;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2817-2822
    • /
    • 2007
  • The purpose of this paper is to study the influence of operating condition and ejector geometries on the hydrodynamics and on the mass transfer characteristic of ejector. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance were also carried out. Variation on the operating conditions was made by varying the gas-liquid flow rate ratio in the range of 0.2 to 1.2. The ejector configuration was also varied on the length to diameter ratio of mixing tube ($L_M/D_M$) in the range of 4 to 10. CFD studies show that at $L_M/D_M$ 5.5, the volumetric mass transfer coefficient increases with respect to gas flow rates. Meanwhile, at $L_M/D_M$ 4, the plot of volumetric mass transfer coefficient to gas-liquid flow rates ratio reach maximum at gas-liquid flow rates ratio of 0.6. This study also shows that volumetric mass transfer coefficient decrease with respect to the increase of mixing tube length.

  • PDF

An Experimental Study on the Performance of a Liquid-Vapor Ejector with Water (액체-증기 이젝터의 성능에 관한 실험적 연구)

  • 박대웅;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • In this study, the performance of five ejectors has been investigated with working fluids of water and water vapor. The diameters of nozzle and mixing tube of five ejectors were 1 and 1.5(ejector A), 1 and 2(ejector B), 1 and 2.5(ejector C), 1 and 3(ejector D), 2 and 4(ejector E) in millimeters. The length of the mixing tube was 8-10 times of its diameter. For each ejector, the ratio of mass flow rate of ejected water to that of entrained water vapor, $\mu$, was evaluated in terms of evaporator pressure, mass flow rate of ejected water, and water temperature. It was found that the performance of an ejector was not stable when the ratio of diameters was too small or too large(ejector A and D) and $\mu$ was almost the same for two ejectors with the same diameter ratio(ejector B and E). It was also found that $\mu$ increased almost linearly with an increase of evaporator pressure and the ratio $\mu$ increased as water temperature decreased. As expected, $\mu$ converged to zero as the water temperature approached the evaporator temperature. Finally, a non-dimensional correlation has been developed to predict$\mu$ terms of evaporator pressure and saturation pressure of ejected water.

  • PDF

NOx Reduction by Acoustic Excitation on Coaxial Air Stream in Lifted Turbulent Hydrogen Non-Premixed Flame (부상된 수소난류확산화염에서 동축공기의 음향가진에 의한 NOx 저감)

  • Heo, Pil-Won;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • The effects of acoustic excitation of coaxial air on mixing enhancement and reduction of nitrogen oxides (NOx) emission were investigated. A compression driver was attached to the coaxial air supply tube to impose excitation. Measurements of NOx emission with frequency sweeping were performed to observe the trend of NOx emission according to the fuel and air flow conditions and to inquire about the effective excitation frequency for reducing NOx. Then, Schlieren photographs were taken to visualize the flow field and to study the effect of excitation. In addition, phase-locked particle image velocimetry (PIV) was performed to acquire velocity field for each case and to investigate the effect of vortices more clearly. Direct photographs and OH chemiluminescence photographs were taken to study the variation of flame length and reaction zone. It was found that acoustic forcing frequencies close to the resonance frequencies of coaxial air supply tube could reduce NOx emission. This NOx reduction was influenced by mixing enhancement due to large-scale vortices formed by fluctuation of coaxial air jet velocity.

  • PDF

Two-Phase Jet Flow Characteristics in the Pure Oxygen Aeration System Using Two-phase Jet Nozzle (이상 제트 노즐을 사용한 순산소 폭기시스템의 이상유동 특성)

  • Jung, Chan-Hee;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.258-263
    • /
    • 2009
  • Jet Loop Reactor(JLR), in which a two-phase nozzle is installed, is the new design technique for the treatment of high concentration wastewater by accelerating of oxygen contacting between substrate and surrounding bacteria. This numerical study of the two phase jet flow was conducted to find the optimum design of JLR. It was shown that there was a minimum velocity in the nozzle for continuous circulation of wastewater. The optimum location and the size of the draft tube for continuous circulation were examined. It was certain that the smaller the air size is, the more the effect of the mixing increases. The relation between the mixing effect and the turbulence was confirmed.

Performance Characteristics of Air Driven Ejector According to the Position Changes and the Shape of Driving Nozzle (공기구동 이젝터의 노즐 형상과 위치 변화에 따른 성능 특성)

  • Ji, Myoung-Kuk;Kim, Pil-Hwan;Park, Ki-Tae;Utomo, Tony;Chung, Han-Shik;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.550-556
    • /
    • 2008
  • The aim of this research is to analyze the influence of motive pressure, driving nozzle position and nozzle throat ratio on the performance of ejector. The experiment was conducted in the variation of motive pressure of 0.196, 0.294, 0.392 and 0.490MPa respectively. The position of driving nozzle was varied in difference locations according to mixing tube diameter(0.5d, 1d, 2d, 3d, 4.15d, 5d and 6d). The experimental results show when the nozzle outlet is located at 3d, the flow characteristics change abruptly. It is shown that the suction flow rate and pressure lift ratio of ejector is influenced by the driving nozzle position. At nozzle position location of the Id of mixing tube diameter the performance of ejector gives the best performance.

The Detection of the Steam Generator Tubing Defects in the Sludge Piles by the Eddy Current Testing (과전류탐상법(過電流探傷法)에 의한 Sludge Pile속의 결함검출(缺陷檢出))

  • Ahn, Byeong-Wan;Yim, Chang-Jae;Koo, Kil-Mo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.16-26
    • /
    • 1988
  • In the in-service inspections for the steam generator tubing of the nuclear power plants by the Eddy Current Testing, the ECT signals are evaluated by their phase. If oxidized copper sludge is piled up in the secondary side, however, big sludge signals occur in large quantities which originate from copper layers forming in the sludge piles due to the pitting mechanism of the steam generator tubing by $Cu^{2+}$, and modulate the defect signals, causing the difficulty in the defect detection. In this research, sludge specimens were prepared considering the formations of the sludge signal sources and multi-frequency ECT mixing experiments by different choices of the mixing standards were performed. The results were found to be 5 to 30% of the tube wall thickness over-estimated. Experiments using the ring-type mixing standards showed the least errors of all, while those with the mixing standards nearing the sludge conditions brought larger errors as a result of the influence of the interference between the defect and the copper layers.

  • PDF

An Experimental Study on the Lift-off Behavior of Tone-Excited Propane Non-premixed Jet Flames (음향 가진된 프로판 비예혼합 제트 화염의 부상 거동에 대한 실험적 연구)

  • Kim, Seung-Gon;Kim, Kang-Tae;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.569-579
    • /
    • 2004
  • The lift-off characteristics of lifted laminar propane jet flames highly diluted with nitrogen are investigated introducing acoustic forcing with a fuel tube resonance frequency. A flame stability curve is obtained according to forcing strength and the nozzle exit velocity for N2 diluted flames. Flame lift-off behavior is globally classified into three regimes; 1) a weakly varying partially premixed behavior caused by a collapsible mixing for large forcing strength, 2) a coexistent behavior of the edge flame and a weakly varying partially premixed behavior for moderate forcing strength, and 3) edge flame or triple flame behavior for small forcing. It is shown that the laminar lifted flame with forcing affects flame lift-off behavior considerably, and is also clarified that the flame characteristic of flame base is well described with the penetration depth of the degree of mixing, ${\gamma}$$\_$$\delta$/. It is also confirmed that the weakly varying partially premixed flame caused by a collapsible mixing fur large forcing strength behaves as that just near flame blow-out in turbulent lift-off flame.

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF