• Title/Summary/Keyword: Mixing Phenomena

Search Result 213, Processing Time 0.026 seconds

Numerical Visualization of the Pseudo-Shock Waves using LES (LES를 이용한 Pseudo-Shock Waves의 가시화)

  • Deng, Ruoyu;Jin, Yingzi;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.29-34
    • /
    • 2015
  • The interaction between a normal shock wave and a boundary layer along a wall surface in internal compressible flows causes a very complicated flow. This interaction region containing shock train and mixing region is called as pseudo-shock waves. Pseudo-shock waves in the divergent part of a rectangular nozzle have been investigated by using large-eddy simulation (LES). LES studies have been done for the complex flow phenomena of three-dimensional pseudo-shock waves. The LES results have been validated against experimental wall-pressure measurements. The LES results are in good agreement with experimental results. Pseudo-shock length and corner separation have been studied in three-dimensional LES model. Comparison of centerline pressure measurement and 3D visualization measurement has been discussed for the corner separation position. It has been concluded that the pseudo-shock length should be measured by using 3D visualization measurement.

Internal Viscous Flow Computation Within the Jet Pump Elements (제트 폄프 요소 내부의 유동 해석)

  • Cho J. K.;Oh S. W.;Park W. G.;Oh S. M.;Lee S. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.99-104
    • /
    • 1996
  • The jet pump is being used in many fields for several purposes because of its simple construction and easy operation. The characteristics of the geometrical variables, pressure gradient and velocity distribution of the jet pump are studied using the CFD technique. The flow calculations through a bended nozzle. a mixing chamber and a venturi are presented and phenomenological aspects are discussed. This study solve 3-D steady incompressible Navier-Stokes equations using the Iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives and 3rd-order accurate QUICK scheme for the convective terms. The Mark-and-cell concept was applied efficiently to solve continuity equation, which is differenced 2nd-order accurate central differenced scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A O-type of grid system is generated inside a nozzle and venturi of the jet pump. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

Micro Holographic PTV Analysis of Three-dimensional Dean Flows in a Curved Micro-tube (마이크로 홀로그래픽 PTV를 이용한 미세곡관 내부 Dean 유동의 3차원 유동해석)

  • Kim, Seok;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.689-690
    • /
    • 2008
  • In the present study, a micro holographic PTV (HPTV) system was used to experimentally investigate the structure of 3D flow within a curved micro-tube with varying Dean number. The employed HPTV system incorporated a high-speed digital camera to measure the temporal evolution of the 3D velocity fields of micro-scale fluid flows. With increasing Dean number, flow in the curved tube is transformed from a steady flow to a secondary flow with two counter-rotating vortices. In this study, to analyze the 3D flow characteristics in the curved section of tube at a high Dean number, the trajectories of fluid particles were obtained experimentally using the whole 3D velocity field data obtained by the micro HPTV technique. The mean velocity field distribution was then obtained by ensemble averaging the instantaneous velocity fields. These results would be helpful in the design of various passages within micro-scale devices or micro-chips and in understanding the mixing phenomena that occur in curved conduits along the trajectories of fluid particles.

  • PDF

Double-Diffusive Convection Due to Heating from Below in a Rotating Cylindrical Cavity (회전하는 원통형밀폐용기내의 아랫면가열에 의한 이중확산대류에 관한 실험적 연구)

  • 강신형;이태홍;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1731-1740
    • /
    • 1995
  • Experimental investigations have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution due to heating from below in a rotating cylindrical cavity. The objective is to examine the flow phenomena and the heat transfer characteristics according to the changes in temperature gradient, concentration gradient and rotating velocity of cavity. Thermal and solutal boundary conditions at side wall are adiabatic and impermeable, respectively. The top and bottom plate are maintained each at constant temperature and concentration. The cavity is put into a state of solid body rotation. Like the stationary case, the types of initially-formed flow pattern are classified into three regimes depending on the effective Rayleigh number and Taylor number; stagnant flow regime, single mixed-layer flow regime and successively formed multi-mixed layer flow regime. At the same effective Rayleigh number, the number of initially-formed mixed layer and its growth rate decrease as the effect of rotation increases. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered-flow regime, but look both liner in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly.

A Numerical Study of Autoignition in a Confined Cylindrical Spray Combustor (밀폐된 원통형 분무 연소기내의 자연발화 현상에 관한 수치적 연구)

  • Choi, Ji Hun;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.778-787
    • /
    • 1999
  • In this study, the autoignition process of liquid fuel, injected into hot and stagnant air in a 2-D axisymmetric confined cylindrical combustor, has been investigated. Eulerian-Lagrangian scheme was adopted to analyze the two-phase flow and combustion. The unsteady conservation equations were used to solve the transition of the gas field. Interactions between two phases were accounted by using the particle source in cell (PSI-Cell) model, which was used for detailed consideration of the finite rates of transports between phases. And infinite conduction model was adopted for the vaporization of droplets. The results have shown that the process of the autoignition consists of heating up of droplets, vaporization, mixing and ignition. The ignition criteria could be determined by the temporal variations of temperature, reaction rate and species mass fraction. And the effects of various parameters on ignition phenomena are examined. These have shown that the increasing the reaction rate and/or the vaporization rate can reduce the ignition delay time.

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

Effects of Plasticizer to Polyvinylchloride on Radio-resistance of Organic Stabilizer,Dielectric and Mechanical Characteristics under the Influence of Radiation (Polyvinylchloride에 있어 가소제의 첨가가 유기안정제의 내 방사성 및 유전, 기계적 특성에 미치는 영향)

  • 김봉흡;강도열;이재인
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.89-94
    • /
    • 1977
  • In order to investigate the properties of radiation resistance together with dielectric, and mechanical relaxation behaviors of polyvinylcholoride exposed to several different doses under the .gamma.-ray of Co$^{60}$ source, several observations were carried out on the exposed specimens propared by mixing dibutyl-tin-dilaulate and dibutyl-tin-dimaleate as stabilizer with or without adding dioctyl-phthalate as plasticizer. Conclusions obtained from the study are as follows: The origin of the absorption band at 1,540-1,640$cm^{-1}$ / on I.R. spectrum seems to be RCOO- ion originated from ionization of the stabilizer, and this peak can be useful as a measure of radiation resistance on polyvinylchloride. Addition of increasing plasticizer to polyvinylchloride exhibits increasing radiation resistance and the reason for this result may be attributed to aromatic resonance absorption of radiation energy by diotylphthalate. On dose dependent dielectric characteristics, nonplastized specimen shows a peak at about 10 Mrad and that this peak disappears on the plastification of specimens. Those phenomena may be explainable in considering the statistical distribution of scissored chain molecular segments as well as the plastification process of plasticizer to polyvinylchloride chain molecules.

  • PDF

Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines (액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Lee, Gee-soo;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.15-21
    • /
    • 2002
  • The hydraulic performance analysis of an entire pump system composed of inducer, impeller, volute and seal for the application of turbopumps is numerically performed using three-dimensional Navier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this work, the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results, due to the limitation of the quasi-steady method. Since the volute was found to be over-designed by the pressure distribution of the volute wall, re-design of the volute has been performed, resulting in an improved performance characteristic.

Preparations and Interfacial Phenomena of Hybrid Composites (Hycom) Containing Wasted Stone Powders and Tire Chips (폐석분과 폐타이어 칩을 충진제로 한 혼성복합재(Hycom)의 제조 및 계면현상 연구)

  • Hwang, Teak-Sung;Cha, Ki-Sik
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • In this study, wasted stone powders (WSP) obtained from sludge and Wasted Tire Chips (WTC) as fillers have been used to formulate polymer hybrid composites based on Unsaturated Polyester (UPE) resin. To further enhance not only the interfacial bond between the inorganic filler and the polymer matrix, but also the filler dispersion by wetting the particulate surfaces to uniformly spread the resin during the mixing, silane coupling agent[${\gamma}$-methacryloxy propyl trimethoxy silane (${\gamma}$-MPS)] was used. The influences of organic recycled fillers contents and the concentrations of coupling agent in polymer hybrid composite formulations have been investigated from a mechanical and microstructural point o view through Mercury Porosimeter and SEM.

  • PDF