• Title/Summary/Keyword: Mixing Mechanism

Search Result 324, Processing Time 0.032 seconds

Mixing Mechanism of Carbon Black (카본블랙의 혼합메카니즘에 관한 연구)

  • Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.26 no.4
    • /
    • pp.287-295
    • /
    • 1991
  • The mixing process with carbon black is important in the rubber industries. However, it is difficult to characterize the mixing mechanism of the carbon black. The mixing mechanism(distributive mixing and dispersive mixing) was discribed in this paper. The effect of fill factor on the mixing of the carbon black was studied. The dispersive mixing ability increases with increasing fill factor. However, the distributive mixing ability decreases with increasing fill factor. The effect of the carbon black content on the rheological property of the material was studied in this paper. The viscosity of the material increases with increasing the carbon black content. However, the elasticity of the matarial decreases with the carbon black content.

  • PDF

Evaluation of effect of rapid mixing intensity on chemical phosphorus removal using Al hydrolysis speciation (가수분해 산물 분포를 이용한 급속혼화강도가 화학적 인 제거 효율에 미치는 영향의 규명)

  • Kim, Seung-Hyun;Yoon, Dong-Soo;Moon, Byung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.367-373
    • /
    • 2011
  • Mechanism of rapid mixing effect on chemical phosphorus removal is evaluated in this study. Assuming that chemical phosphorus removal is unaffected by mixing time, only rapid mixing intensity is evaluated. In order to find out the mechanism, it is hypothesized that rapid mixing affects the Al hydrolysis speciation, and that formation of more monomeric species ($Al^a$) results in better removal of phosphorus. According to a ferron assay, more $Al^a$ formed at higher mixing intensity than at lower intensity. Subsequent experiments revealed that better phosphorus removal was obtained at higher intensity than at lower intensity, in terms of the molar ratio of $Al_{added}/P_{removed}$. The proposed hypothesis was proved in this study. Chemical phosphorus removal is affected by rapid mixing intensity due to its effect on the Al hydrolysis speciation.

Ratio of Mixing Effects due to Wind, Surface Cooling, and Tide on West Coast of Korea in December, 1998

  • Park, Yong-Kyu;Lee, Byung-Gul
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.249-253
    • /
    • 2000
  • Data obtained from a cruise from 4~12 December, 1998 was analyzed to estimate the mixing effects of wind, surface cooling, and tide. A band denoting a mixing area with a temperature difference of less than 1$^{\circ}C$ between the sea surface and the bottom extended 40~60 km from the coast into the open sea, following 125$^{\circ}$ 30\` E in longitude. This band was divided into two areas; a well-mixed area close to the coast and a stratified region in the open sea. The mixing effect due to the wind was only 2%, yet the mixing effect due to the tides was about 68%. This indicates that surface cooling and tides were the major factors involved in the mixing mechanism on the west coast during the cooling season.

  • PDF

A Study on Design of an Effective Micromixer using Horizontal and Vertical Multi-mixing (HVM) Flow Motion (상하좌우 복합유동 유도를 통한 고효율 HVM 마이크로 믹서 설계에 관한 연구)

  • Yoo, Won-Sui;Kim, Sung-Jin;Kang, Seok-Hoon;Kim, Pan-Guen;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.751-757
    • /
    • 2011
  • Subminiature devices such as Lab-on-a-chip and p-TAS(Micro Total Analysis System) have been intensively studied in biotechnology and chemistry, In many cases, a micromixer was widely used to mix different solutions for synthesizing novel materials. However, in microfluidic system, there is generally a laminar flow under very small Reynolds number so it is difficult to mix each solution perfectly. To settle this problem, we propose a new mixing mechanism which generates a horizontal and vertical multi-mixing (HVM) flow for effective mixing within a short mixing section. We evaluated the proposed mechanism using CFD analysis, and the results showed that the HVM mechanism had a relative high-effectiveness comparing to the existing methods.

The Experimental Study of Liquid Phase Mixing Mechanism of Split Triplet Impinging Spray (분리 충돌형 분사기의 액상 혼합 메커니즘에 관한 실험적 고찰)

  • 이성웅;조용호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.18-23
    • /
    • 2002
  • Liquid phase mixing of impinging injector is a resultant byproduct from the momentum exchange between a pair of impinging jets and penetration of opponent jet. Principal aim of the present study is revealing the liquid phase mixing mechanism of split triplet impinging injection sprays, and thus extending our understanding on this particular injection element. Overall mixing extent is estimated from patternation tests by the use of purified tap water and kerosene to simulate the real propellant components, respectively, and with the liquid jet momentum ratio, a controlling mixing parameter, in the range of 0.5 to 6.0. Emphasis is placed on the effect of liquid sheet superposition and disintegration, and the results with detailed spray visualization revealed the fact that superposed liquid sheet disintegration is the main pathway of liquid phase mixing of split triplet impinging injector to yield enhanced mixing qualities.

  • PDF

Development of a Barrier Embedded Chaotic Micromixer (배리어가 포함된 카오스 마이크로 믹서의 개발)

  • 김동성;이석우;권태헌;이승섭
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • It is of great interest to enhance mixing performance in a microchannel in which the flow is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved in this laminar flow regime. In this regard, we present a new chaotic passive micromixer, named Barrier Embedded Micromixer (BEM), of which the mixing mechanism is based on chaotic flows. In BEM, chaotic flow is induced by periodic perturbation of the velocity field due to periodically inserted barriers along the channel wall while a helical type of flow is obtained by slanted grooves on the bottom surface of the channel in the pressure driven flow. To experimentally compare the mixing performance, a T-microchannel and a microchannel with only slanted grooves were also fabricated. All microchannels were made of PDMS (Polydimethylsiloxane) from SU-8 masters that were fabricated by conventional photolithography. Mixing performance was experimentally characterized with respect to an average mixing intensity by means of color change of phenolphthalein as pH indicator. It was found that mixing efficiency decreases as Re increases for all three micromixers. Experimental results obviously indicate that BEM has better mixing performance than the other two. Chaotic mixing mechanism, suggested in this study, can be easily applied to integrated microfluidic systems , such as Micro-Total-Analysis-System, Lab-on-a-chip and so on.

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF

Characteristic of Al(III) Hydrosis Species at Rapid Mixing Condition (급속흔화조건에서 AI(III) 가수분해종의 분포특성)

  • Jung, Chul-Woo;Son, Jung-Gi;Shon, In-Shik;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by different Al(III) coagulants. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$. increases rapidly. Also, for alum, higher mixing speed favoured Al(III) polymers formation over precipitates of $Al(OH)_{3(s)}$ but for PACl, higher mixing speed formed more precipitates of $Al(OH)_{3(s)}$. At A/D and sweep condition, both $Al(OH)_{3(s)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

A Study of Al(III) Hydrolysis Species Characterization under Various Coagulation Condition (응집 pH와 응집제 종류에 따른 Al(III)가수분해종 특성변화에 대한 연구)

  • Song, Yu-Kyung;Jung, Chul-Woo;Sohn, In-Shik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.958-967
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomers, polymers and solid precipitates may form. Different Al(III) coagulants (alum and PSOM) show to have different Al(III) species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved AI(III) (monomer and polymer) increases, but for PSOM, precipitates of $Al(OH)_{3(S)}$ increases rapidly. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from AI-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_{3(S)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Application of a mapping method for mixing analysis of micromixers (마이크로믹서의 혼합해석을 위한 매핑법 적용)

  • Kang, Tae-Gon;Singh, Mrityunjay K.;Anderson, Patrick D.;Kwon, Tai-Hun;Meijer, Han E.H.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1758-1760
    • /
    • 2008
  • Under typical operating conditions, flows in microfluidic devices are laminar and molecular diffusion across the channels is slow, which makes an efficient mixing in microfluidic devices difficult to achieve. The mechanism to achieve effective mixing in laminar flows is that of repetitive stretching and folding. Essential is to generate spatially periodic flows with crossing cross sectional streamlines. A mapping method is employed to analyze mixing in micromixers, enabling us to investigate the progress of mixing both qualitatively and quantitatively. The progress of mixing is characterized by a measure of mixing, called the discrete intensity of segregation. The mapping method is applied to mixing in such micromixers as the staggered herringbone mixer, the barrier embedded micromixer, and the three-dimensional serpentine channel to demonstrate the capability of the numerical scheme to tackle general mixing problems in microfluidic devices.

  • PDF