• Title/Summary/Keyword: Mixing Enhancement

Search Result 239, Processing Time 0.031 seconds

The Numerical Analysis Study about the Air-Fuel Mixing Characteristics by the Change on the 3D Cavity Size (3차원 Cavity 크기 변화에 의한 공기-연료 혼합특성의 수치적 해석 연구)

  • Seo, Hyung-Seok;Jeon, Young-Jin;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.93-98
    • /
    • 2007
  • The air velocity flowing in inner combustion chamber of SCramjet is supersonic and the time of its stay is very short as a few milliseconds. Within this short time, fuel injection, air-fuel mixing, and combustion process should be accomplished. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for mixing characteristics. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. 3 different sized cavities of the same length-height ratio were used in order to recognize the effect about cavity size. Also, the case without cavity was analyzed to find the effect of cavity. Used code compared with the result of experiment under identical conditions and it was verified. Through this comparison and verification, mixing enhancement by cavity size could be confirmed.

  • PDF

A STUDY ON CHARACTERISTICS OF AC ELECTROOSMOTIC FLOWS AND MIXING IN A MICROCHANNEL WITH COPLANAR ELECTRODES (마이크로 채널 내 교류 전기삼투 현상을 이용한 유체 유동 및 혼합에 대한 수치해석적 연구)

  • Suh, Y.K.;Heo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • This paper presents numerical results of fluid flows and mixing in a microfluidic device with AC electroosmotic flows (AC-EOF) around coplanar electrodes attached on the top and bottom walls. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX10. Experiment was performed to confirm the generation of the drift velocity around the electrodes. It was found that near the coplanar electrodes 3-D complex flows are generated. The AC-electroosmotic flow on the electrodes plays an important role in mixing the liquid.

Simultaneous mixing and pumping using asymmetric microelectrodes (비대칭 미세전극을 이용한 동시 혼합 및 펌핑)

  • Kim, Byoung-Jae;Yoon, Sang-Youl;Lee, Kyung-Heon;Sung, Hyung-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.77-83
    • /
    • 2007
  • This paper presents numerical and experimental works for simultaneous pumping and mixing small liquid using asymmetric microelectrode arrays, based on AC electroosmotic flows. To this end, four arrangements of electrode pairs were considered with diagonal/herringbone shapes. Numerical simulations were made of three-dimensional geometries by using the linear theory. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls. To validate the numerical predictions, the microfluidic devices were made through MEMS. The flow rate was obtained by using micro PIV, increasing the applied frequency. The electrolyte was potassium chloride solution. The flow patterns above electrodes were visualized to see lateral flow for mixing. The experimental results showed good agreements with the numerical predictions.

  • PDF

Dual-plane Stereoscopic PIV Measurement on the Lobed Jet Mixing Flow

  • SAGA Tetsuo;KOBAYASHI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.108-122
    • /
    • 2001
  • In a continuing effect to study the mixmg enhancement by large-scale streamwise vortices in lobed mixing flows, an advanced PIV system named as dual-plane stereoscopic PIV system was used in the present study to conduct simultaneous vorticity (all three components) measurement of an air jet exhausted from a lobed nozzle. Unlike 'classical' 2-D PIV system or conventional 'single-plane' stereoscopic PIV system, the dual-plane stereoscopic PIV system used in the present study can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously. Therefore, it can provide the distributions of all the three components of vorticity vectors instantaneously and simultaneously. The evolution and interaction characteristics of the large-scale streamwise vortices and azimuthal Kelvin-Helmholtz vortices in the lobed jet mixing flow were revealed instantaneously and quantitatively from the measurement results of the dual-plane stereoscopic PIV system. The characteristics of the mixing process in the lobed jet mixing flow were analyzed based on the simultaneous measurement results of the steamwise vorticity and azimuthal Kelvin-Helmholtz vorticity distributions.

  • PDF

The Study of Optimum Design of Y-Channel Micro-Mixer by Using LIF Conforcal Microscope (LIF Conforcal Microscope을 이용한 Y-channel 마이크로믹서의 최적설계 연구)

  • Kim, Sang-Woo;Hyun, Seok-Ho;Shin, Tae-Seok;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.311-317
    • /
    • 2009
  • Due to extremely small device size and velocity scale, mixing in microchannel take place very slowly by way of molecular diffusion transport. Mixing enhancement becomes a central issue in microfluidics for biomedical and chemical applications. In this work, The optimization results and validation through experiment and fabrication. In this efficient micromixer design, it is essential to evaluate mixing efficiency with good precision. Mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS). Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

LES of Turbulent Mixing of Non Reacting Flow in a Gas Generator

  • Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.391-398
    • /
    • 2008
  • LES analysis was conducted with in-house CFD code to investigate the turbulence evolution and interaction due to turbulence ring and splash plate in the gas generator. Though chemical reaction was not accounted for, the results can be useful in determining the turbulence characteristics generated by ring and plate. The calculation results show that the installation of turbulence ring can introduce additional turbulences and improve turbulent mixing in the downstream flow. However, the addition of splash plate in the downstream of TR brings totally different shape of perturbation energy and enstrophy distribution for turbulent mixing. This enhancement can be done by the formation of the intensively strong vorticity production and mixing behind the plate. Pressure drop was found to be a reasonable level of about 1% or less of initial pressure in all calculation cases. Also, calculation results revealed that the variation of TR shape and intrusion length did not change the characteristics of turbulent mixing in the chamber. Even though the effect of installation location of splash plate on the turbulent mixing is not investigated yet, calculation results conclude the addition of splash plate leads to the increase in turbulent mixing with an acceptable pressure drop.

  • PDF

Effects of an Elliptic Jet Screech Reflector on an Underexpanded Sonic Jet (타원형 제트 스크리치 반사판이 과소팽창 음속 제트에 미치는 영향)

  • Kim, Jung-Hoon;Kim, Jin-Hwa;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.887-894
    • /
    • 2004
  • A technique of mixing enhancement by using an elliptic jet screech reflector has been examined experimentally in an underexpanded sonic round jet where jet screech tone is generated. Since jet screech is known to enhance jet spreading, a reflector was designed to focus jet screech waves near the nozzle lip at an underexpanded jet. The reflector has an elliptic cross section of which one focus is located near the nozzle lip and the other in the jet screech source region in a plane including the jet axis. In the jet with the elliptic reflector, the mass flow rate showed a significant increase in the jet entrainment when compared to that for the small disk reflector. This was attributed to the increased screech amplitude near the nozzle lip as well as the mode change of the jet. The jet mixing was also increased by the amplified jet screech at two other underexpanded jets, but the jet oscillation mode did not change.

A Study on Mixing Enhancement by Rotating and Oscillating Stirrers in the Micro Channel (미소채널 내 회전교반기와 진동교반기에 의한 혼합향상의 연구)

  • An Sang-Joon;Kim Yong-Dae;Maeng Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.430-437
    • /
    • 2006
  • The mixing effect is studied by comparing rotating and oscillating stirrers in the micro channel. The cases of Re=10 to 80 with various stirring speeds are considered to analysis the effect of Re and stirrer speed for the mixing. Under Re=20, the oscillating stirrer represents better mixing rate than the rotating stirrer up to the critical stirrer speed which has a maximum efficiency. Over Re=30, the results of oscillating and rotating stirrer show that the faster the stirrer speed, the higher the mixing effect within the concerned stirrer speed range and the oscillating stirrer keeps the higher mixing rate. It was found that the mixing effect is a function which has an optimum of the Reynolds number and the stirrer speed. The D2Q9 Lattice Boltzmann Method is used due to the merits of calculation for the unsteady flow with moving boundary.

Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames (다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성)

  • Yoon, S.S.;Lee, S.M.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.137-142
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene, even though the propene diffusion flame produces more PAHs and soot than that of propane and ethane. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained by propargyl radical directly dehydrogenated from ethane (or propane).

  • PDF

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF