• 제목/요약/키워드: Mixing Enhancement

검색결과 239건 처리시간 0.028초

3차원 Cavity 크기 변화에 의한 공기-연료 혼합특성의 수치적 해석 연구 (The Numerical Analysis Study about the Air-Fuel Mixing Characteristics by the Change on the 3D Cavity Size)

  • 서형석;전영진;변영환;이재우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.93-98
    • /
    • 2007
  • 스크램제트의 연소실 내부로 유입되는 공기의 속도는 초음속으로 체류 시간은 수 ms로 매우 짧다. 이 짧은 시간 안에 연료분사, 공기-연료 혼합, 연소과정이 모두 이루어져야 한다. 공기와 연료의 혼합을 증대하는 방법은 여러 가지가 제시되었다. 이중 자유류 마하수 2.5의 단일 수직 분사 방법에서의 Cavity를 이용한 혼합 특성올 알아보기 위해 수치해석을 수행하였다. 사용된 코드는 동일조건의 실험결과와 비교하여 검증하였고 이를 통해 Cavity의 크기에 의한 혼합증대를 확인할 수 있었다.

  • PDF

마이크로 채널 내 교류 전기삼투 현상을 이용한 유체 유동 및 혼합에 대한 수치해석적 연구 (A STUDY ON CHARACTERISTICS OF AC ELECTROOSMOTIC FLOWS AND MIXING IN A MICROCHANNEL WITH COPLANAR ELECTRODES)

  • 서용권;허형석
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.16-21
    • /
    • 2007
  • This paper presents numerical results of fluid flows and mixing in a microfluidic device with AC electroosmotic flows (AC-EOF) around coplanar electrodes attached on the top and bottom walls. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX10. Experiment was performed to confirm the generation of the drift velocity around the electrodes. It was found that near the coplanar electrodes 3-D complex flows are generated. The AC-electroosmotic flow on the electrodes plays an important role in mixing the liquid.

비대칭 미세전극을 이용한 동시 혼합 및 펌핑 (Simultaneous mixing and pumping using asymmetric microelectrodes)

  • 김병재;윤상열;이경헌;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.77-83
    • /
    • 2007
  • This paper presents numerical and experimental works for simultaneous pumping and mixing small liquid using asymmetric microelectrode arrays, based on AC electroosmotic flows. To this end, four arrangements of electrode pairs were considered with diagonal/herringbone shapes. Numerical simulations were made of three-dimensional geometries by using the linear theory. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls. To validate the numerical predictions, the microfluidic devices were made through MEMS. The flow rate was obtained by using micro PIV, increasing the applied frequency. The electrolyte was potassium chloride solution. The flow patterns above electrodes were visualized to see lateral flow for mixing. The experimental results showed good agreements with the numerical predictions.

  • PDF

Dual-plane Stereoscopic PIV Measurement on the Lobed Jet Mixing Flow

  • SAGA Tetsuo;KOBAYASHI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.108-122
    • /
    • 2001
  • In a continuing effect to study the mixmg enhancement by large-scale streamwise vortices in lobed mixing flows, an advanced PIV system named as dual-plane stereoscopic PIV system was used in the present study to conduct simultaneous vorticity (all three components) measurement of an air jet exhausted from a lobed nozzle. Unlike 'classical' 2-D PIV system or conventional 'single-plane' stereoscopic PIV system, the dual-plane stereoscopic PIV system used in the present study can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously. Therefore, it can provide the distributions of all the three components of vorticity vectors instantaneously and simultaneously. The evolution and interaction characteristics of the large-scale streamwise vortices and azimuthal Kelvin-Helmholtz vortices in the lobed jet mixing flow were revealed instantaneously and quantitatively from the measurement results of the dual-plane stereoscopic PIV system. The characteristics of the mixing process in the lobed jet mixing flow were analyzed based on the simultaneous measurement results of the steamwise vorticity and azimuthal Kelvin-Helmholtz vorticity distributions.

  • PDF

LIF Conforcal Microscope을 이용한 Y-channel 마이크로믹서의 최적설계 연구 (The Study of Optimum Design of Y-Channel Micro-Mixer by Using LIF Conforcal Microscope)

  • 김상우;현석호;신태석;이도형
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.311-317
    • /
    • 2009
  • Due to extremely small device size and velocity scale, mixing in microchannel take place very slowly by way of molecular diffusion transport. Mixing enhancement becomes a central issue in microfluidics for biomedical and chemical applications. In this work, The optimization results and validation through experiment and fabrication. In this efficient micromixer design, it is essential to evaluate mixing efficiency with good precision. Mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS). Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

LES of Turbulent Mixing of Non Reacting Flow in a Gas Generator

  • Lee, Chang-Jin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.391-398
    • /
    • 2008
  • LES analysis was conducted with in-house CFD code to investigate the turbulence evolution and interaction due to turbulence ring and splash plate in the gas generator. Though chemical reaction was not accounted for, the results can be useful in determining the turbulence characteristics generated by ring and plate. The calculation results show that the installation of turbulence ring can introduce additional turbulences and improve turbulent mixing in the downstream flow. However, the addition of splash plate in the downstream of TR brings totally different shape of perturbation energy and enstrophy distribution for turbulent mixing. This enhancement can be done by the formation of the intensively strong vorticity production and mixing behind the plate. Pressure drop was found to be a reasonable level of about 1% or less of initial pressure in all calculation cases. Also, calculation results revealed that the variation of TR shape and intrusion length did not change the characteristics of turbulent mixing in the chamber. Even though the effect of installation location of splash plate on the turbulent mixing is not investigated yet, calculation results conclude the addition of splash plate leads to the increase in turbulent mixing with an acceptable pressure drop.

  • PDF

타원형 제트 스크리치 반사판이 과소팽창 음속 제트에 미치는 영향 (Effects of an Elliptic Jet Screech Reflector on an Underexpanded Sonic Jet)

  • 김정훈;김진화;유정열
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.887-894
    • /
    • 2004
  • A technique of mixing enhancement by using an elliptic jet screech reflector has been examined experimentally in an underexpanded sonic round jet where jet screech tone is generated. Since jet screech is known to enhance jet spreading, a reflector was designed to focus jet screech waves near the nozzle lip at an underexpanded jet. The reflector has an elliptic cross section of which one focus is located near the nozzle lip and the other in the jet screech source region in a plane including the jet axis. In the jet with the elliptic reflector, the mass flow rate showed a significant increase in the jet entrainment when compared to that for the small disk reflector. This was attributed to the increased screech amplitude near the nozzle lip as well as the mode change of the jet. The jet mixing was also increased by the amplified jet screech at two other underexpanded jets, but the jet oscillation mode did not change.

미소채널 내 회전교반기와 진동교반기에 의한 혼합향상의 연구 (A Study on Mixing Enhancement by Rotating and Oscillating Stirrers in the Micro Channel)

  • 김용대;맹주성;안상준
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.430-437
    • /
    • 2006
  • The mixing effect is studied by comparing rotating and oscillating stirrers in the micro channel. The cases of Re=10 to 80 with various stirring speeds are considered to analysis the effect of Re and stirrer speed for the mixing. Under Re=20, the oscillating stirrer represents better mixing rate than the rotating stirrer up to the critical stirrer speed which has a maximum efficiency. Over Re=30, the results of oscillating and rotating stirrer show that the faster the stirrer speed, the higher the mixing effect within the concerned stirrer speed range and the oscillating stirrer keeps the higher mixing rate. It was found that the mixing effect is a function which has an optimum of the Reynolds number and the stirrer speed. The D2Q9 Lattice Boltzmann Method is used due to the merits of calculation for the unsteady flow with moving boundary.

다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성 (Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames)

  • 윤승석;이상민;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.137-142
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene, even though the propene diffusion flame produces more PAHs and soot than that of propane and ethane. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained by propargyl radical directly dehydrogenated from ethane (or propane).

  • PDF

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • 김형진;박재원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF