• Title/Summary/Keyword: Mixed-inhibition

Search Result 338, Processing Time 0.025 seconds

Effects of Silicon on Galvanizing Coating Characteristics in Dual Phase High Strength Steel (복합조직형 고강도 용융아연 도금강판의 도금특성에 미치는 강중 Si의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Lee, Joon-Ho;Sohn, Ho-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.423-432
    • /
    • 2009
  • In the galvanizing coating process, the effects of the silicon content on the coatability and wettability of molten zinc were investigated on Dual-Phase High Strength Steels (DP-HSS) with various Si contents using the galvanizing simulator and dynamic reactive wetting systems. DP-HSS showed good coatability and a well-developed inhibition layer in the range of Si content below 0.5 wt%. Good coatability was the results of the mixed oxide $Mn_{2}SiO_{4}$, being formed by the selective oxidation on the surface, with a low contact angle in molten zinc and a large fraction of oxide free surface that provided a sufficient site for the molten zinc to wet and react with the substrate. On the other hand, with more than 0.5 wt%, DP-HSS exhibited poor coatability and an irregularly developed inhibition layer. The poor coatability was due to the poor wettability that resulted from the development of network-type layers of amorphous ${SiO}_{2}$, leading to a high contact angle in molten zinc, on the surface.

Electrochemical Studies on Corrosion Inhibition Behaviour of Synthesised 2-acetylpyridine 4-ethyl-3-thiosemicarbazone and Its Tin(IV) Complex for Mild Steel in 1 M HCl Solution

  • Hazani, Nur Nadira;Mohd, Yusairie;Ghazali, Sheikh Ahmad Izaddin Sheikh Mohd;Farina, Yang;Dzulkifli, Nur Nadia
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Corrosion inhibition by synthesised ligand, 2-acetylpyridine 4-ethyl-3-thiosemicarbazone (HAcETSc) and its tin(IV) complex, dichlorobutyltin(IV) 2-acetylpyridine 4-ethyl-3-thiosemicarbazone ($Sn(HAcETSc)BuCl_2$) on mild steel in 1 M hydrochloric acid (HCl) was studied using weight loss measurement, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The inhibition efficiency increases by increasing the inhibitor concentrations. The polarisation study showed that both synthesised compounds were mixed type inhibitors. The electrochemical impedance study showed that the presence of inhibitors caused the charge transfer resistance to increase as the concentration of inhibitors increased. The adsorption of these compounds on mild steel surface was found to obey Langmuir's adsorption isotherm with the free energy of adsorption ${\Delta}G{^o}_{ads}$ of -3.7 kJ/mol and -7.7 kJ/mol for ligand and complex respectively, indicating physisorption interaction between the inhibitors and 1 M HCl solution.

Evaluation of the Inhibitive Performance of Cyperus Conglomeratus Leaves Extract as a Green Corrosion Inhibitor on Mild Steel XC70 in Acid Medium

  • Belkis, Guessoum;Abdelkader, Hadj Seyd;Oumelkheir, Rahim
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.171-183
    • /
    • 2022
  • The performance and inhibitory action of the aqueous extract of Cyperus Conglomeratus's leaves against corrosion of XC70 steel in a 1M HCl acid medium are studied by the determination of the weight loss, the potentiodynamic polarization curves analysis, and electrochemical impedance measurements (electrochemical techniques). The corrosion inhibitory efficiency of XC70 steel increases with the increasing concentration of the green inhibitor, however, the corrosion rate of the steel decreases. Weight loss measurements show that the maximum percentage corrosion inhibition efficiency is approximately 61.86%, while the analysis of the mixed character polarization curves shows that the inhibitor could achieve an inhibition efficiency of 86.96%. The electrochemical impedance study confirmed that the value of the charge transfer resistance (Rct) increases and the value of the double layer capacity (Cdl) decreases with increasing concentration of the aqueous extract of Cyperus Conglomeratus's leaves, thus increasing the inhibition efficiency. The study showed that this aqueous extract acts by adsorption on the metal surface; this adsorption follows the Langmuir isotherm. This research work showed that Cyperus Conglomeratus leaves extract acts as an effective and eco-friendly inhibitor on mild steel in an acid medium.

Corrosion Inhibition of Carbon Steel in Sulfuric Acid Using Cymbopogon citratus as a Green Corrosion Inhibitor

  • Gadang, Priyotomo;Tamara Emylia Suci, Nurarista;Yanyan, Dwiyanti;Bening Nurul Hidayah, Kambuna;Arini, Nikitasari;Siska, Prifiharni;Sundjono, Sundjono
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.423-433
    • /
    • 2022
  • The objective of this study was to determine whether Cymbopogon citratus extract as a corrosion inhibitor from natural tropical resources could prevent corrosion of carbon steel in sulfuric acid solution. Inhibitory action of this extract was investigated using electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Those methods revealed corrosion rate, efficiency of inhibition, and adsorptions isotherm values when the extract was added to the sulfuric acid solution at concentration up to 500 ppm with various immersion time at ambient temperature. Results revealed that higher concentration of the extract and longer immersion time decreased the corrosion rate of carbon steel whereas the inhibition efficiency of the extract was increased up to 97.25%. The value of charge transfer resistance was increased significantly by adding the extract at concentration up to 500 ppm with an immersion time of 60 minutes. The type of the extract was a mixed inhibitor. It could inhibit the corrosion process in both anodic and cathodic sides electrochemically. Results of this study suggest that the mechanism of adsorption on the surface of carbon steel is related to Langmuir adsorption isotherm.

Investigation of some Natural Product Extracts as Corrosion Inhibitors for Mild Steel in Acid Mediu

  • Subramania, A.;Sathiya Priya, A.R.;Saravanan, S.;Abdul Nasser, A.J.;Vasudevan, T.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.231-235
    • /
    • 2005
  • The inhibitive effect of extracts of tamarind seeds and jackfruit seeds, curry leaves and henna leaves on corrosion of mild steel in 1M HCl solution have been studied by weight loss, potentiodynamic polarization and impedance measurements. Results obtained from the electrochemical techniques were in good agreement with weight loss results. From the weight loss data, the values of surface coverage ($\Theta$) and corrosion rate were calculated. The inhibition efficiency (IE) increased with increasing inhibitor concentration in 1M HCl solution. In all the cases the adsorption of the natural product extracts on the mild steel surface from 1M HCl follows the Langmuir adsorption isotherm relationship. Potentiodynamic polarization studies reveal the fact that all the four natural product extracts act as mixed type inhibitors. The decrease in the inhibition efficiency follows the order: Extracts of jackfruit seed>henna leaves>curry leaves>tamarind seed.

Effect of pH on the Degradation of 2, 4-Dinitrophenol in Sequencing Batch Reactor Process (연속회분식(連續回分式) 처리공정(處理工程)에 의한 2, 4-Dinitrophenol분해시(分解時) pH의 영향(影響))

  • Jo, Kwan-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.96-101
    • /
    • 1998
  • Substrate inhibition of 2,4-dinitrophenol (DNP) degradation was investigated using activated sludge which had been adapted to mineralize DNP. DNP is a metabolic uncoupler, preventing cells from making energy for growth and it has been suggested that pH may be important in mitigating effects of uncouplers. After acclimation of the activated sludge, the effect of pH on toxicity of DNP at high concentration (75 mg/L) was investigated, over a pH range of 5 to 9. DNP inhibition was found to be strongly dependent on mixed liquor pH. The DNP degradation rate was highest in the pH range of 6.95 to 7.84; at pH 5.94 degradation of 75 mg/L DNP was significantly inhibited; at pH < 5.77, DNP degradation was completely inhibited after approximately 30% of the DNP was degraded. By comparison, no significant effect of pH variation in the same range was seen on glucose uptake by the activated sludge culture.

  • PDF

Role of Some Phenylthiourea Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution

  • Fouda, Abd El-Aziz El-Sayed;Hussein, Ahmed
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.264-273
    • /
    • 2012
  • Five derivatives of phenylthiourea namely: 1-(4-methoxyphenyl)-3-phenylthiourea (1), 1-(4-methylphenyl)-3- phenylthiourea (2), 1-(4-bromophenyl)-3-phenylthiourea (3), 1-(4-chlorophenyl)-3-phenylthiourea (4) and 1-phenylthiourea (5) have been evaluated as new inhibitors for the corrosion of carbon steel in 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization measurements showed that these derivatives are mixed-type inhibitors. The inhibition efficiency was found to increase with inhibitor concentration and decreases with rise in temperature. The thermodynamic parameters of adsorption and activation were determined and discussed. Nyquist plots showed depressed semicircles with their centre below real axis. The adsorption process of studied derivatives on carbon steel surface obeys Temkin adsorption isotherm. The synergistic effect of these derivatives and some anions is discussed from the viewpoint of adsorption models. The electrochemical results are in good agreement with the calculated quantum chemical HOMO and LUMO energies of the tested molecules.

Cinnamon Plant Extract as Corrosion Inhibitor for Steel Used in Waste Water Treatment Plants and Its Biological Effect on Escherichia coli

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;El-Khateeb, Ayman Y.;Fakih, Mohamed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.4
    • /
    • pp.359-365
    • /
    • 2014
  • The inhibition effect of cinnamon plant extract as a green corrosion inhibitor for steel in sulfide polluted salt water was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM). The results showed that cinnamon plant extract in sulfide polluted salt water is a good corrosion inhibitor with inhibition efficiency reached to 80% at 250 ppm of the plant extract. The adsorption of cinnamon obeys Temkin adsorption isotherm, and acts as a mixed-type of inhibitor but dominantly as a cathodic inhibitor in sulfide polluted salt water.

Inhibition of Xanthine Oxidase by Flavonols from Onion Skin (양파껍질에서 분리한 플라보놀의 Xanthine Oxidase 저해기작)

  • 서형주;나경수;배송환;손홍수;정수현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.693-697
    • /
    • 1998
  • The influence of flavonols from onion skin on xanthine oxidase was investigated. Methanol extract was showed 12.8% of yield, 661.3mg% of flavonoids contents and 88.7% of inhibitory effect on xanthine oxidase F1 and F2 fractions were obtained from the methanol extract by ODS and Sephadex LH-20 chromatography. F1 and F2 fractions flavonols(3-OH free) identified by UV/visible spectroscopy. Inhibitory effect of F1 and F2 on xanthine oxidase were increased with increasing concentration. IC50s of F1 and F2 were 0.95$\mu\textrm{g}$ and 0.67$\mu\textrm{g}$, respectively. To confirm the specificity of F1 and F2 against xanthine oxidase, albumin was added to the reaction mixture. The inhibition of F1 and F2 may be due to specific binding to xanthine oxidase. The modes of their inhibitions were of mixed type with respect to xanthine as a substrate.

  • PDF

Biodegradation Characteristics of Nitrogen-containing Aromatic Compounds in Activated Sludge (활성슬러지를 이용한 질소방향족화합물의 생물학적 분해 특성)

  • Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.222-228
    • /
    • 2010
  • Biological degradation of nitrogen-containing aromatic compounds was investigated in activated sludge previously adapted to mineralize low concentrations of nitrogen-containing aromatic compounds. Normally, the time required for 95% degradation of 10 mg/l dinitrophenol (DNP) under aerobic conditions was less than 4 hours without any lag, and with mixed liquor suspended solid (MLSS) levels from 600 to 1,000 mg/l. However, when the initial DNP concentration was increased to 75 mg/l, lags and even complete inhibition of DNP degradation were observed. The length of the lag was found to increase proportionally with decreasing MLSS levels. When dilute activated sludge was incubated for extended periods (192 hours), degradation of 75 mg/l DNP did eventually occur after lag periods of 37 to 144 hours, depending on the MLSS concentration. DNP was degradable in high concentrations if MLSS concentrations were sufficiently high to allow growth of bacteria resistant to the toxic effects of DNP.